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Topological Phases

•Gapped (bulk) local Hamiltonian

•Finite correlation length

•Localized, finite energy excitations (quasiparticles) 

carry emergent topological quantum numbers

•Low energy effective theory described by a TQFT



Fractional Quantum Hall States

Tsui, Stormer, Gossard 1982

Laughlin 1983



Topological Phases

Without symmetry imposed, gapped phases are fully 

characterized by “topological order”

e.g. for (2+1)D = the UMTC and chiral central charge c-

Two Hamiltonians (points in parameter space) realize the same phase if they can be 

continuously connected without closing the gap

no symmetry



Symmetry Enriched Topological Phases

With symmetry imposed, there is a finer scale of classification 

characterized by the “SET order”

Two Hamiltonians (points in parameter space) realize the same SET phase if they can be 

continuously connected while respecting the symmetry without closing the gap

no symmetry symmetry enriched

respect symmetry

Q



Symmetry Enriched Topological Phases

With symmetry imposed, there is a finer scale of classification 

characterized by the “SET order”

symmetry enriched

Q• Topological Insulators

• Quantum Spin Liquids

• Fractional Quantum Hall States

• Majorana and Parafermion Systems



Symmetry Enriched Topological Phases

General framework to characterize and classify SET order?

Wen 2002

Partial and limited approaches: 

• Projective symmetry group

• cohomology for SPT, trivial TO

• Some exactly solved models, no perm

• Chern-Simon for Abelian (2+1)D

• Symmetry fractionalization for (2+1)D Abelian, no perm

Chen, Gu, Liu, Wen 2011

Mesaros, Ran 2012

Lu, Vishwanath 2012

Essin, Hermele 2013



Symmetry Enriched Topological Phases

General framework to characterize and classify SET order?

Our approach, complete for (2+1)D:

1.  Symmetry Fractionalization:

2.  Symmetry Defects:

Classify different ways that quasiparticles may carry 

fractionalized quantum numbers

Barkeshli, Bonderson, Meng, Wang 2014

Develop and classify algebraic theory of defects (“fluxes”)

G-Crossed UMTC
Turaev 2000

Etingof, Nikshych, Ostrik 2010 



Topological Phases  (2+1)D

Effective theory described by UMTC

Topological charges:

(anyon types)

a
ab

c

Equivalence classes of states: local operations do not change 

topological charge 

U



Topological Phases  (2+1)D

Effective theory described by UMTC

Fusion:

a
b

No internal DOFs, but different fusion outcomes are possible

b

c
a

10
2
1

2
1 ang. mom. analog:



Topological Phases  (2+1)D

Effective theory described by UMTC

Fusion:

c

No internal DOFs, but different fusion outcomes are possible

b

c
a
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Topological Phases  (2+1)D

Effective theory described by UMTC

Fusion: b

c
a

Topological (nonlocal) state space:



Topological Phases  (2+1)D

Effective theory described by UMTC

Associativity:



Topological Phases  (2+1)D

Effective theory described by UMTC

Associativity:

ang. mom. analog: 6j-symbols



Topological Phases  (2+1)D

Effective theory described by UMTC

Commutativity:



Topological Phases  (2+1)D

Effective theory described by UMTC

Braiding:

non-Abelian if there are multiple fusion channels  c

     RU

modular = non-degenerate braiding = unitary S-matrix



Fractional Quantum Hall States

Laughlin FQH states

Laughlin 1983

m even (bosonic)

topo charges:

fusion:

associativity:

braiding:

m odd (fermionic)



Topological Symmetry

Autoequivalence maps

invertible maps that leave topological properties invariant



Topological Symmetry

Autoequivalence maps



Topological Symmetry

Autoequivalence maps

Mod out natural isomorphisms (trivial autoequivalences)

“topological symmetry group”



Fractional Quantum Hall States

Laughlin FQH states

Laughlin 1983

m even (bosonic)

m odd (fermionic)

e.g. “quasiparticle-quasihole” conjugation:



Global Symmetry

Symmetries of microscopic Hamiltonian

Action on physical Hilbert space 

How do the symmetries act on the 

emergent topological properties?



Global Symmetry

Action on emergent topological theory

natural isomorphism defines an invariant



Symmetry Fractionalization

“Localization” of symmetry action

e.g. for on-site symmetry



Projective Representations

Recall: projective representations are classified by

Associativity gives cocycle condition:

Multiplication is projective:

Coboundaries are “trivial” (mod out):



Symmetry Fractionalization

Local actions have projective form

Similar to projective representations, 

but with additional properties:

1. Symmetry action 

2. Must be consistent with fusion



Symmetry Fractionalization

Local actions have projective form

Results:

1. Possibly obstructed

2. Classified (when unobstructed) by cohomology

group formed by 

the Abelian anyons



Fractional Quantum Hall States

Laughlin FQH states

Laughlin 1983

m even (bosonic)

m odd (fermionic)

Consider                       charge conservation:

quasiparticle with topo charge a carries electric charge               

where



Fractional Quantum Hall States

Laughlin FQH states

Laughlin 1983

m even (bosonic)

m odd (fermionic)

Consider                     qp-qh symmetry:



Fractional Quantum Hall States

Laughlin FQH states

Laughlin 1983

m even (bosonic)

Consider                     qp-qh conj symmetry:

nontrivial fractionalization class assigns “half charges” of G

symmetry to the odd integer topo charges (quasiparticles)



Symmetry Defects

Extrinsic (confined) objects that locally enact g-action
“symmetry fluxes”

gg

𝑎
𝜌g (𝑎)



Symmetry Defects

e.g. Lattice model with on-site symmetry:



Symmetry Defects

e.g. Lattice model with on-site symmetry:

Draw a line on the lattice. 

For terms in H0 that straddle the line, apply the symmetry 

transformation (conjugate) for sites on one side of the line. 



Symmetry Defects

Distinct types of g-defects?

Effective theory described by G-crossed UMTC



Symmetry Defects

Topological charges:

(distinct types of g-flux)

a
ab

c

# of g-invariant quasiparticle types in 

(anyon topological charges)

Effective theory described by G-crossed UMTC



Symmetry Defects

Effective theory described by G-crossed UMTC

G-graded fusion:

hb ghc
ga

fuse



Symmetry Defects

Effective theory described by G-crossed UMTC

G-graded fusion:

Topological state space (same as before, but G-graded):



Associativity (same as before, but G-graded):

Symmetry Defects

Effective theory described by G-crossed UMTC



Symmetry Defects

=

Effective theory described by G-crossed UMTC

Braiding:



Symmetry Defects

Effective theory described by G-crossed UMTC

G-crossed braiding:

includes symmetry action on topological charges 
(defect branch sheets implicitly into screen)



Symmetry Defects

Effective theory described by G-crossed UMTC

Sliding lines over vertices:

extension of symmetry action on topological theory



Symmetry Defects

Effective theory described by G-crossed UMTC

Sliding lines under vertices:

extension of local projective form factors



Symmetry Defects

Effective theory described by G-crossed UMTC

Solutions to consistency equations gives G-crossed extensions 

(symmetry enrichment) of the original topological phase

Classified by cohomology

(defect/SPT) 

Possibly obstructed

(symm frac class)

(symm frac class)

(defect) 

(torsors)



Examples of Symmetry Defects

• Fluxes in symmetry protected topological (SPT)  phases

• Majorana and Parafermion zero-modes                                 

(topological phase - superconductor heterostructures)

• “Genons” in multi-layer topological phases with layer interchange

• Defects in topological phases in lattice models with on-site symmetry

• Dislocations in topological phases with translation symmetry



Fractional Quantum Hall States

Laughlin FQH states

m odd (fermionic)

Consider                     qp-qh symmetry:



Fractional Quantum Hall States

Clarke et al. 2012

Lindner et al. 2012

Cheng 2012

qp-qh symmetry defects in FQH states may be obtained by 

interfacing FQH systems with superconductors

Parafermion zero modes



Fractional Quantum Hall States

Laughlin FQH states

m odd (fermionic)



Fractional Quantum Hall States

Laughlin FQH states

m even (bosonic)

Consider                     qp-qh symmetry:



Fractional Quantum Hall States

Laughlin FQH states

m even (bosonic)

OR



Gauging Symmetry

Promote symmetry to local gauge invariance

defects become deconfined quasiparticles

(anyons) described by a new UMTC                 

fully determined by the defect theory



Symmetry, Defects, and Gauging of Topological Phases
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