

Briad group actions on spin chains and supersymmetry

Gus Lehrer

University of Sydney NSW 2006 Australia

February 4, 2016

Braid group actions on spin chains and supersymmetry

Gus Lehrer

University of Sydney NSW 2006 Australia

Feb 4, 2016

Most is joint work with Ruibin Zhang (Sydney), some with P. Deligne (Princeton) or H. Andersen (Aarhus)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathfrak{g} be a finite dimensional simple Lie algebra over \mathbb{C} Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \ \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \ \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}), \ \text{etc.}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let ${\mathfrak g}$ be a finite dimensional simple Lie algebra over ${\mathbb C}$

Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}),$ etc.

The associative algebra $U=U(\mathfrak{g}),$ is the universal enveloping algebra of \mathfrak{g}

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let $\mathfrak g$ be a finite dimensional simple Lie algebra over $\mathbb C$

Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}),$ etc.

The associative algebra $U=U(\mathfrak{g}),$ is the universal enveloping algebra of \mathfrak{g}

Drinfeld and Jimbo have defined a quantum deformation $U_q = U_q(\mathfrak{g})$ of U as Hopf algebra. This is a Hopf algebra over $\mathbb{C}(q)$.

Let $\mathfrak g$ be a finite dimensional simple Lie algebra over $\mathbb C$

Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}),$ etc.

The associative algebra $U=U(\mathfrak{g}),$ is the universal enveloping algebra of \mathfrak{g}

Drinfeld and Jimbo have defined a quantum deformation $U_q = U_q(\mathfrak{g})$ of U as Hopf algebra. This is a Hopf algebra over $\mathbb{C}(q)$.

If *V*, *W* are g-modules (equivalently: U-modules), then U acts on $V \otimes W$ via $\Delta : U \rightarrow U \otimes U$.

Let $\mathfrak g$ be a finite dimensional simple Lie algebra over $\mathbb C$

Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}),$ etc.

The associative algebra $U=U(\mathfrak{g}),$ is the universal enveloping algebra of \mathfrak{g}

Drinfeld and Jimbo have defined a quantum deformation $U_q = U_q(\mathfrak{g})$ of U as Hopf algebra. This is a Hopf algebra over $\mathbb{C}(q)$.

If *V*, *W* are g-modules (equivalently: U-modules), then U acts on $V \otimes W$ via $\Delta : U \rightarrow U \otimes U$.

 $u \cdot v \otimes w = \sum_i x_i v \otimes y_i w$ if $\Delta(u) = \sum_i x_i \otimes y_i$.

Let ${\mathfrak g}$ be a finite dimensional simple Lie algebra over ${\mathbb C}$

Examples: $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{g}_2(\mathbb{C}), \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}),$ etc.

The associative algebra $U=U(\mathfrak{g}),$ is the universal enveloping algebra of \mathfrak{g}

Drinfeld and Jimbo have defined a quantum deformation $U_q = U_q(\mathfrak{g})$ of U as Hopf algebra. This is a Hopf algebra over $\mathbb{C}(q)$.

If *V*, *W* are g-modules (equivalently: U-modules), then U acts on $V \otimes W$ via $\Delta : U \rightarrow U \otimes U$.

 $u \cdot v \otimes w = \sum_i x_i v \otimes y_i w$ if $\Delta(u) = \sum_i x_i \otimes y_i$.

In particular: U acts on $T^r(V) = V^{\otimes r}$ for all r

Classical invariant theory asks: determine the structure of $\operatorname{End}_{\mathrm{U}}(V^{\otimes r})$ for certain *V*, all *r*.

(日) (日) (日) (日) (日) (日) (日)

Classical invariant theory asks: determine the structure of $\operatorname{End}_{\mathrm{U}}(V^{\otimes r})$ for certain *V*, all *r*.

'Determine' means: find generators (FFT) and relations (SFT) for the associative algebra $\text{End}(V^{\otimes r})^{\text{U}}$.

Classical invariant theory asks: determine the structure of $\operatorname{End}_{\mathrm{U}}(V^{\otimes r})$ for certain *V*, all *r*.

'Determine' means: find generators (FFT) and relations (SFT) for the associative algebra $\text{End}(V^{\otimes r})^{\text{U}}$.

Cases where this has been solved (from antiquity):

(日) (日) (日) (日) (日) (日) (日)

Classical invariant theory asks: determine the structure of $\operatorname{End}_{\mathrm{U}}(V^{\otimes r})$ for certain *V*, all *r*.

'Determine' means: find generators (FFT) and relations (SFT) for the associative algebra $\text{End}(V^{\otimes r})^{\text{U}}$.

Cases where this has been solved (from antiquity):

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C}), V = \mathbb{C}^n$ ('natural' representation):

(ロ) (同) (三) (三) (三) (三) (○) (○)

Classical invariant theory asks: determine the structure of $\operatorname{End}_{\mathrm{U}}(V^{\otimes r})$ for certain *V*, all *r*.

'Determine' means: find generators (FFT) and relations (SFT) for the associative algebra $\text{End}(V^{\otimes r})^{\text{U}}$.

Cases where this has been solved (from antiquity):

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C}), V = \mathbb{C}^n$ ('natural' representation):

In this case we have $\mathbb{C}Sym_r \xrightarrow{\eta_r} End_U(V^{\otimes r})$. Permutations act by permuting factors in tensors-OK because U is cocommutative ($\Delta(X) = X \otimes 1 + 1 \otimes X$ for $X \in \mathfrak{g}$).

Classical invariant theory asks: determine the structure of $\operatorname{End}_{U}(V^{\otimes r})$ for certain *V*, all *r*.

'Determine' means: find generators (FFT) and relations (SFT) for the associative algebra $\text{End}(V^{\otimes r})^{\text{U}}$.

Cases where this has been solved (from antiquity):

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C}), V = \mathbb{C}^n$ ('natural' representation):

In this case we have $\mathbb{C}\text{Sym}_r \xrightarrow{\eta_r} \text{End}_U(V^{\otimes r})$. Permutations act by permuting factors in tensors-OK because U is cocommutative ($\Delta(X) = X \otimes 1 + 1 \otimes X$ for $X \in \mathfrak{g}$).

FFT: η_r is surjective; SFT: ker(η_r) is generated by the idempotent in $\mathbb{C}Sym_{n+1}$ corresponding to the alternating representation. (All due to Schur, 1901).

 $\mathfrak{g} = \mathfrak{o}(n,\mathbb{C})$ ($\epsilon = +1$) or $\mathfrak{g} = \mathfrak{sp}(2n,\mathbb{C})$ ($\epsilon = -1$). Here we have

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

(日) (日) (日) (日) (日) (日) (日)

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

FFT: v_r is surjective (Brauer 1937).

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

FFT: v_r is surjective (Brauer 1937).

SFT: ker(v_r) is generated by a certain explicit idempotent E_n in $B_{n+1}(\epsilon n)$ (L-Zhang, 2012)

(日) (日) (日) (日) (日) (日) (日)

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

FFT: v_r is surjective (Brauer 1937).

SFT: ker(v_r) is generated by a certain explicit idempotent E_n in $B_{n+1}(\epsilon n)$ (L-Zhang, 2012)

(ロ) (同) (三) (三) (三) (三) (○) (○)

In the symplectic case, E_n is the central idempotent corresponding to the trivial representation of $B_{n+1}(-n)$

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

FFT: v_r is surjective (Brauer 1937).

SFT: ker(v_r) is generated by a certain explicit idempotent E_n in $B_{n+1}(\epsilon n)$ (L-Zhang, 2012)

In the symplectic case, E_n is the central idempotent corresponding to the trivial representation of $B_{n+1}(-n)$

Remarkably, it is simply the sum of all the $\frac{(2n)!}{2^n n!}$ diagrams in $B_{n+1}(-n)$, each with coefficient 1.

 $\mathfrak{g} = \mathfrak{o}(n, \mathbb{C}) \ (\epsilon = +1) \text{ or } \mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C}) \ (\epsilon = -1).$ Here we have $\nu_r : B_r(\epsilon n) \longrightarrow \operatorname{End}_{\mathrm{U}}(V^{\otimes r})$, where $B_r(\delta)$ is the Brauer algebra on *r* strings, with parameter δ .

FFT: v_r is surjective (Brauer 1937).

SFT: ker(v_r) is generated by a certain explicit idempotent E_n in $B_{n+1}(\epsilon n)$ (L-Zhang, 2012)

In the symplectic case, E_n is the central idempotent corresponding to the trivial representation of $B_{n+1}(-n)$

Remarkably, it is simply the sum of all the $\frac{(2n)!}{2^n n!}$ diagrams in $B_{n+1}(-n)$, each with coefficient 1.

In the orthogonal case, E_n is explicitly described in terms of diagrams, all of which have coefft ± 1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved

When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved

It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,

G = OSp(m|2n) (the orthosymplectic **group** scheme), then

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved

It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,

G = OSp(m|2n) (the orthosymplectic **group** scheme), then

There is a homomorphism $\mu_r : B_r(m-2n) \longrightarrow \operatorname{End}_G(V^{\otimes r})$, and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved

It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,

G = OSp(m|2n) (the orthosymplectic **group** scheme), then

There is a homomorphism $\mu_r : B_r(m-2n) \longrightarrow \operatorname{End}_G(V^{\otimes r})$, and

 μ_r is surjective (the FFT).

 $ker(\mu_r)$ may be characterised linearly (the SFT), but there is no result about being generated by an idempotent.

- When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved
- It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,
- G = OSp(m|2n) (the orthosymplectic **group** scheme), then
- There is a homomorphism $\mu_r : B_r(m-2n) \longrightarrow \operatorname{End}_G(V^{\otimes r})$, and
- μ_r is surjective (the FFT).
- $ker(\mu_r)$ may be characterised linearly (the SFT), but there is no result about being generated by an idempotent.
- If we replace *G* by osp(V), then an additional endomorphism, which arises from the super-Pfaffian Ω , is required if *m* is even.

When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved

It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,

G = OSp(m|2n) (the orthosymplectic **group** scheme), then

There is a homomorphism $\mu_r : B_r(m-2n) \longrightarrow \text{End}_G(V^{\otimes r})$, and μ_r is surjective (the FFT).

 $ker(\mu_r)$ may be characterised linearly (the SFT), but there is no result about being generated by an idempotent.

If we replace *G* by osp(V), then an additional endomorphism, which arises from the super-Pfaffian Ω , is required if *m* is even.

If B(-, -) is the orthosymplectic form on V, then

 $\Omega = \sqrt{\det(B(v_i, v_j))^{2n+1}}$, where this is regarded as a function of $(v_1, \dots, v_m) \in V^m$.

- When $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ with $\mathfrak{g}_{\bar{0}}$ the even subalgebra and $\mathfrak{g}_{\bar{1}}$ the odd part, similar results apply, although the statements and proofs are more involved
- It is still the case that if $V = \mathbb{C}^{m|2n}$, and $\mathfrak{g} = \operatorname{osp}(m|2n)$,
- G = OSp(m|2n) (the orthosymplectic **group** scheme), then
- There is a homomorphism $\mu_r : B_r(m-2n) \longrightarrow \text{End}_G(V^{\otimes r})$, and μ_r is surjective (the FFT).
- $ker(\mu_r)$ may be characterised linearly (the SFT), but there is no result about being generated by an idempotent.

If we replace *G* by osp(V), then an additional endomorphism, which arises from the super-Pfaffian Ω , is required if *m* is even.

If B(-, -) is the orthosymplectic form on V, then $\Omega = \sqrt{\det(B(v_i, v_j))^{2n+1}}$, where this is regarded as a function of $(v_1, \dots, v_m) \in V^m$.

It is a fact that Ω is alternating for OSp(*V*), and is a polynomial function of degree m(2n+1) on *V*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

(ロ) (同) (三) (三) (三) (○) (○)

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

when $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and *V* is any Weyl module (simple representation in this context)

(ロ) (同) (三) (三) (三) (○) (○)

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

when $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and *V* is any Weyl module (simple representation in this context)

(ロ) (同) (三) (三) (三) (○) (○)

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

when $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and *V* is any Weyl module (simple representation in this context)

In the quantum case, contractions of the Temperley-Lieb algebra by iterations of the Jones-Wenzl idempotent are the relevant finite dimensional algebras.

(ロ) (同) (三) (三) (三) (○) (○)

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

when $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and *V* is any Weyl module (simple representation in this context)

In the quantum case, contractions of the Temperley-Lieb algebra by iterations of the Jones-Wenzl idempotent are the relevant finite dimensional algebras.

We'll see this later.

There are solutions (FFT and SFT) which we shall discuss later in the quantum setting

when $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and *V* is any Weyl module (simple representation in this context)

In the quantum case, contractions of the Temperley-Lieb algebra by iterations of the Jones-Wenzl idempotent are the relevant finite dimensional algebras.

We'll see this later.

This will provide a source of unitarisable braid group actions on tensor space, where the braid generators satisfy polynomial equations of arbitrarily high order.

Endomorphisms of tensor powers-the quantum case.

 \mathfrak{g} as above: a finite dimensional reductive complex Lie algebra; $U(\mathfrak{g}) = U(\mathfrak{g})$ its universal enveloping algebra, and $U_q = U_q(\mathfrak{g})$ its Drinfeld-Jimbo quantisation over $\mathcal{K} := \mathbb{C}(q)$, q an indeterminate.

(日) (日) (日) (日) (日) (日) (日)
Endomorphisms of tensor powers-the quantum case.

 \mathfrak{g} as above: a finite dimensional reductive complex Lie algebra; $U(\mathfrak{g}) = U(\mathfrak{g})$ its universal enveloping algebra, and $U_q = U_q(\mathfrak{g})$ its Drinfeld-Jimbo quantisation over $\mathcal{K} := \mathbb{C}(q)$, q an indeterminate.

Corresponding to \mathfrak{g} there is a root system $\Phi \subset \mathfrak{h}^*$, where \mathfrak{h} is a Cartan subalgebra, and we assume chosen a set $\{\alpha_1, \ldots, \alpha_r\} \subset \Phi$ of simple roots. There is a canonical bilinear form (-, -) on \mathfrak{h}^* such that $(\alpha, \alpha) = 2$ for short roots α .

(日) (日) (日) (日) (日) (日) (日)

Endomorphisms of tensor powers-the quantum case.

 \mathfrak{g} as above: a finite dimensional reductive complex Lie algebra; $U(\mathfrak{g}) = U(\mathfrak{g})$ its universal enveloping algebra, and $U_q = U_q(\mathfrak{g})$ its Drinfeld-Jimbo quantisation over $\mathcal{K} := \mathbb{C}(q)$, q an indeterminate.

Corresponding to \mathfrak{g} there is a root system $\Phi \subset \mathfrak{h}^*$, where \mathfrak{h} is a Cartan subalgebra, and we assume chosen a set $\{\alpha_1, \ldots, \alpha_r\} \subset \Phi$ of simple roots. There is a canonical bilinear form (-, -) on \mathfrak{h}^* such that $(\alpha, \alpha) = 2$ for short roots α . As usual, we write *X* for the lattice of weights of \mathfrak{g} ; $X = \{\lambda \in \mathfrak{h}^* \mid (\alpha, \lambda) \in \mathbb{Z}\}$ for all $\alpha \in \Phi$.

(日) (日) (日) (日) (日) (日) (日)

Endomorphisms of tensor powers-the quantum case

 \mathfrak{g} as above: a finite dimensional reductive complex Lie algebra; $U(\mathfrak{g}) = U(\mathfrak{g})$ its universal enveloping algebra, and $U_q = U_q(\mathfrak{g})$ its Drinfeld-Jimbo quantisation over $\mathcal{K} := \mathbb{C}(q)$, q an indeterminate.

Corresponding to g there is a root system $\Phi \subset \mathfrak{h}^*$, where \mathfrak{h} is a Cartan subalgebra, and we assume chosen a set $\{\alpha_1, \ldots, \alpha_r\} \subset \Phi$ of simple roots. There is a canonical bilinear form (-, -) on \mathfrak{h}^* such that $(\alpha, \alpha) = 2$ for short roots α . As usual, we write *X* for the lattice of weights of g; $X = \{\lambda \in \mathfrak{h}^* \mid (\alpha, \lambda) \in \mathbb{Z}\}$ for all $\alpha \in \Phi$. U_q has generators $E_i, F_i, k_i^{\pm 1}, i = 1, \ldots, r$. It is a Hopf algebra, and we have (e.g.) $\Delta(E_i) = E_i \otimes k_i + 1 \otimes E_i$. A sample relation: $k_i E_i k_i^{-1} = q^{(\alpha_i, \alpha_j)} E_i$.

Endomorphisms of tensor powers-the quantum case

 \mathfrak{g} as above: a finite dimensional reductive complex Lie algebra; $U(\mathfrak{g}) = U(\mathfrak{g})$ its universal enveloping algebra, and $U_q = U_q(\mathfrak{g})$ its Drinfeld-Jimbo quantisation over $\mathcal{K} := \mathbb{C}(q)$, q an indeterminate.

Corresponding to \mathfrak{g} there is a root system $\Phi \subset \mathfrak{h}^*$, where \mathfrak{h} is a Cartan subalgebra, and we assume chosen a set $\{\alpha_1, \ldots, \alpha_r\} \subset \Phi$ of simple roots. There is a canonical bilinear form (-, -) on \mathfrak{h}^* such that $(\alpha, \alpha) = 2$ for short roots α .

As usual, we write X for the lattice of weights of \mathfrak{g} ;

 $X = \{\lambda \in \mathfrak{h}^* \mid (\alpha, \lambda) \in \mathbb{Z}\}$ for all $\alpha \in \Phi$.

U_q has generators E_i , F_i , $k_i^{\pm 1}$, i = 1, ..., r. It is a Hopf algebra, and we have (e.g.) $\Delta(E_i) = E_i \otimes k_i + 1 \otimes E_i$. A sample relation: $k_i E_j k_i^{-1} = q^{(\alpha_i, \alpha_j)} E_j$.

If *V* is a representation of U_q , $v \in V$ is a weight vector of weight $\lambda \in X$ if $k_i v = q^{(\lambda, \alpha_i)} v$ for all *i*. Say *V* is of type (1, 1, ..., 1) if it is a sum of weight spaces.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

If *V* is a representation of \mathfrak{g} , write V_q for the corresponding U_q -module. Then *V*, V_q have precisely the same weights.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

If *V* is a representation of \mathfrak{g} , write V_q for the corresponding U_q -module. Then *V*, V_q have precisely the same weights.

The key tool in analysing $V_q^{\otimes r}$ is Drinfeld's *R*-matrix;

 $R \in U_q \otimes U_q$, (a 'completion'). Its main properties are:

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

If *V* is a representation of \mathfrak{g} , write V_q for the corresponding U_q -module. Then *V*, V_q have precisely the same weights.

The key tool in analysing $V_q^{\otimes r}$ is Drinfeld's *R*-matrix;

 $R \in U_q \otimes U_q$, (a 'completion'). Its main properties are:

(i) For
$$x \in U_q$$
, $R\Delta(x)R^{-1} = \Delta'(x)$ (opposite comult.)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

If *V* is a representation of \mathfrak{g} , write V_q for the corresponding U_q -module. Then *V*, V_q have precisely the same weights.

The key tool in analysing $V_q^{\otimes r}$ is Drinfeld's *R*-matrix;

 $R \in U_q \otimes U_q$, (a 'completion'). Its main properties are:

(i) For
$$x \in U_q$$
, $R\Delta(x)R^{-1} = \Delta'(x)$ (opposite comult.)

If W_1 , W_2 , $W_3 \in C_q$, and R_{12} denotes $R \otimes id_{W_3}$ etc, then

The category C_q of representations of U_q of type (1, 1, ..., 1) is equivalent to the category C of finite dimensional representations of \mathfrak{g} .

If V is a representation of \mathfrak{g} , write V_q for the corresponding U_q -module. Then V, V_q have precisely the same weights.

The key tool in analysing $V_q^{\otimes r}$ is Drinfeld's *R*-matrix;

 $R \in U_q \otimes U_q$, (a 'completion'). Its main properties are:

(i) For $x \in U_q$, $R\Delta(x)R^{-1} = \Delta'(x)$ (opposite comult.)

If W_1 , W_2 , $W_3 \in C_q$, and R_{12} denotes $R \otimes id_{W_3}$ etc, then

(ii) $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12} \in \text{End}(W_1 \otimes W_2 \otimes W_3)$ (Yang-Baxter equation).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

$$\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$$

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

$$\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$$

in $\operatorname{Hom}_{U_q}(W_1 \otimes W_2 \otimes W_3, W_3 \otimes W_2 \otimes W_1)$

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

$$\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$$

in $\operatorname{Hom}_{U_q}(W_1 \otimes W_2 \otimes W_3, W_3 \otimes W_2 \otimes W_1)$

Taking $W_i = V$ for all *i*, and writing R_i for \check{R} acting on the *i*, *i* + 1 components of $V^{\otimes r}$,

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

 $\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$

in $\operatorname{Hom}_{U_q}(W_1 \otimes W_2 \otimes W_3, W_3 \otimes W_2 \otimes W_1)$

Taking $W_i = V$ for all *i*, and writing R_i for \check{R} acting on the *i*, *i* + 1 components of $V^{\otimes r}$,

 $|R_iR_{i+1}R_i = R_{i+1}R_iR_{i+1}|$ for all *i* (BRAID RELATION!)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

 $\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$

in $\operatorname{Hom}_{U_q}(W_1 \otimes W_2 \otimes W_3, W_3 \otimes W_2 \otimes W_1)$

Taking $W_i = V$ for all *i*, and writing R_i for \check{R} acting on the *i*, *i* + 1 components of $V^{\otimes r}$,

 $\boxed{R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}}$ for all *i* (BRAID RELATION!)

This shows that if $V \in U_q - mod$ we have

 $\beta_r: \mathcal{KB}_r \longrightarrow \mathrm{End}_{\mathrm{U}_q}(\mathcal{V}^{\otimes r})$

(i),(ii) imply that if $\check{R} = \tau \circ R$ ($\tau(w \otimes w') = w' \otimes w$) then

 $\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}$

in $\operatorname{Hom}_{U_q}(W_1 \otimes W_2 \otimes W_3, W_3 \otimes W_2 \otimes W_1)$

Taking $W_i = V$ for all *i*, and writing R_i for \check{R} acting on the *i*, *i* + 1 components of $V^{\otimes r}$,

 $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$ for all *i* (BRAID RELATION!)

This shows that if $V \in U_q - mod$ we have

 $\beta_r : K\mathcal{B}_r \longrightarrow \operatorname{End}_{\operatorname{U}_q}(V^{\otimes r})$

Questions: When is β_r surjective? (FFT); What is ker(β_r)? (SFT)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

Included are: (\mathfrak{sl}_n , natural or its dual)

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

Included are: $(\mathfrak{sl}_n, natural or its dual)$

 $(g_2, 7 \text{ dimensional representation})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

Included are: $(\mathfrak{sl}_n, natural or its dual)$

 $(g_2, 7 \text{ dimensional representation})$

 $(\mathfrak{sl}_2, ANY irreducible)$

(ロ) (同) (三) (三) (三) (三) (○) (○)

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

Included are: $(\mathfrak{sl}_n, natural or its dual)$

 $(g_2, 7 \text{ dimensional representation})$

(sl₂, ANY irreducible)

 $\mathfrak{g} = \mathfrak{o}_{n}$, or \mathfrak{sp}_{2n} , V = the natural module.

The map β_r is surjective for all *r* if (\mathfrak{g}, V) is a strongly multiplicity free pair.

Included are: $(\mathfrak{sl}_n, \text{natural or its dual})$

 $(g_2, 7 \text{ dimensional representation})$

(sl₂, ANY irreducible)

 $\mathfrak{g} = \mathfrak{o}_n$, or \mathfrak{sp}_{2n} , V = the natural module.

Theorem

(L-R. Zhang (Sydney), H. Zhang (Tsinghua) 2016) β_r is surjective when U_q is the quantised enveloping algebra assiciated with the Lie superalgebra $\mathfrak{g} = \mathfrak{osp}(m|2n, \mathbb{C})$ and $V = \mathbb{C}^{m|2n}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶▲□▶▲□▶▲□▶ □ のQ@

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

As we are interested in unitarisability, we work over a subring $A = \mathbb{Z}[q^{\pm 1}]$ of $\mathbb{C}(q)$. Sometimes we take a slightly larger ring $\widetilde{A} \supseteq A$.

Quantum sl2

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

As we are interested in unitarisability, we work over a subring $A = \mathbb{Z}[q^{\pm 1}]$ of $\mathbb{C}(q)$. Sometimes we take a slightly larger ring $\widetilde{A} \supseteq A$.

We first consider the case d = 1 (2-diml rep.)

Quantum sl2

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

As we are interested in unitarisability, we work over a subring $A = \mathbb{Z}[q^{\pm 1}]$ of $\mathbb{C}(q)$. Sometimes we take a slightly larger ring $\widetilde{A} \supseteq A$.

We first consider the case d = 1 (2-diml rep.)

Here $V_A(1) \otimes V_A(1) = V_A(0) \oplus V_A(2)$, and with appropriate renormalisation, \check{R} acts on $V_A(0)$ and $V_A(2)$ with eigenvalue $q, -q^{-1}$ respectively. So $(R_i - q)(R_i + q^{-1}) = 0$

Quantum sl2

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

As we are interested in unitarisability, we work over a subring $A = \mathbb{Z}[q^{\pm 1}]$ of $\mathbb{C}(q)$. Sometimes we take a slightly larger ring $\widetilde{A} \supseteq A$.

We first consider the case d = 1 (2-diml rep.)

Here $V_A(1) \otimes V_A(1) = V_A(0) \oplus V_A(2)$, and with appropriate renormalisation, \check{R} acts on $V_A(0)$ and $V_A(2)$ with eigenvalue $q, -q^{-1}$ respectively. So $(R_i - q)(R_i + q^{-1}) = 0$ Now $A\mathcal{B}_r/\langle (R_i - q)(R_i + q^{-1}) \rangle \simeq H_r(q)$, which has *A*-basis $\{T_w \mid w \in \operatorname{Sym}_r\}$

To study the braid group action, I want now to focus on the case $g = \mathfrak{sl}_2$, with *V* the highest weight module of highest weight *d* (and dimension d + 1).

As we are interested in unitarisability, we work over a subring $A = \mathbb{Z}[q^{\pm 1}]$ of $\mathbb{C}(q)$. Sometimes we take a slightly larger ring $\widetilde{A} \supseteq A$.

We first consider the case d = 1 (2-diml rep.)

Here $V_A(1) \otimes V_A(1) = V_A(0) \oplus V_A(2)$, and with appropriate renormalisation, \check{R} acts on $V_A(0)$ and $V_A(2)$ with eigenvalue $q, -q^{-1}$ respectively. So $(R_i - q)(R_i + q^{-1}) = 0$ Now $A\mathcal{B}_r/\langle (R_i - q)(R_i + q^{-1}) \rangle \simeq H_r(q)$, which has *A*-basis $\{T_w \mid w \in \operatorname{Sym}_r\}$

$$\begin{split} & \mu_r : \mathcal{AB}_r {\longrightarrow} \mathrm{End}_{\mathrm{U}_q(\mathfrak{sl}_2)} \left(V_{\mathcal{A}}(1)^{\otimes r} \right) \text{ is surjective, with kernel} \\ & \langle a_3(q) := \sum_{w \in \mathrm{Sym}_3} (-q)^{-\ell(w)} \mathcal{T}_w \rangle \end{split}$$

Enter Temperley-Lieb

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Enter Temperley-Lieb

So $\operatorname{End}_{\operatorname{U}_q(\mathfrak{sl}_2)}(V_{\mathcal{A}}(1)^{\otimes r}) \simeq H_r(q)/\langle a_3(q) \rangle \simeq \operatorname{TL}_r(q)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Enter Temperley-Lieb

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

So $\operatorname{End}_{U_q(\mathfrak{sl}_2)}(V_A(1)^{\otimes r}) \simeq H_r(q)/\langle a_3(q) \rangle \simeq \operatorname{TL}_r(q)$

This algebra may be realised in terms of diagrams like this
Enter Temperley-Lieb

So
$$\operatorname{End}_{\operatorname{U}_q(\mathfrak{sl}_2)}(V_A(1)^{\otimes r}) \simeq H_r(q)/\langle a_3(q) \rangle \simeq \operatorname{TL}_r(q)$$

This algebra may be realised in terms of diagrams like this

In terms of the Hecke algebra, the generators are $f_i = T_i + q^{-1}$, so that $f_i^2 = (q + q^{-1})f_i$. f_i is depicted by:

Enter Temperley-Lieb

So
$$\operatorname{End}_{\operatorname{U}_q(\mathfrak{sl}_2)}(V_A(1)^{\otimes r}) \simeq H_r(q)/\langle a_3(q) \rangle \simeq \operatorname{TL}_r(q)$$

This algebra may be realised in terms of diagrams like this

In terms of the Hecke algebra, the generators are $f_i = T_i + q^{-1}$, so that $f_i^2 = (q + q^{-1})f_i$. f_i is depicted by:

$$1 \cdots i i+1 \cdots r$$

$$1 \cdots i i+1 \cdots r$$

$$1 \cdots i i+1 \cdots r$$

Higher dimensional \mathfrak{sl}_2 -modules.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$,

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$,

where V' is a sum of simple modules of highest weight d' < d.

(日) (日) (日) (日) (日) (日) (日)

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$, where V' is a sum of simple modules of highest weight d' < d. Lemma: The projection $p_d : V(1)^{\otimes d} \longrightarrow V(d)$ is the image in TL_d of the idempotent $e_d = P_d(q)^{-1} \sum_{w \in \operatorname{Sym}_d} q^{\ell(w)} T_w \in H_d(\widetilde{A})$,

(日) (日) (日) (日) (日) (日) (日)

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$, where V' is a sum of simple modules of highest weight d' < d. Lemma: The projection $p_d : V(1)^{\otimes d} \longrightarrow V(d)$ is the image in TL_d of the idempotent $e_d = P_d(q)^{-1} \sum_{w \in \operatorname{Sym}_d} q^{\ell(w)} T_w \in H_d(\widetilde{A})$, where $P_d(q) = q^{d(d-1)/2} [d]_q!$ and $\widetilde{A} = A [[d]^{-1}]$ (Jones-Wenzl idempotent!)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$, where V' is a sum of simple modules of highest weight d' < d. Lemma: The projection $p_d : V(1)^{\otimes d} \longrightarrow V(d)$ is the image in TL_d of the idempotent $e_d = P_d(q)^{-1} \sum_{w \in \operatorname{Sym}_d} q^{\ell(w)} T_w \in H_d(\widetilde{A})$, where $P_d(q) = q^{d(d-1)/2}[d]_q!$ and $\widetilde{A} = A[[d]^{-1}]$ (Jones-Wenzl idempotent!) Since $(V(1)^{\otimes d})^{\otimes r} = V(1)^{\otimes rd} = V(d)^{\otimes r} \oplus$ other,

- ロ ト - (同 ト - 三 ト - 三 - - - の へ ()

We realise V(d) through $V(1)^{\otimes d} \simeq V(d) \oplus V'$,

where V' is a sum of simple modules of highest weight d' < d. Lemma: The projection $p_d : V(1)^{\otimes d} \longrightarrow V(d)$ is the image in TL_d of the idempotent $e_d = P_d(q)^{-1} \sum_{w \in \operatorname{Sym}_d} q^{\ell(w)} T_w \in H_d(\widetilde{A})$, where $P_d(q) = q^{d(d-1)/2} [d]_q!$ and $\widetilde{A} = A[[d]^{-1}]$ (Jones-Wenzl idempotent!)

Since $(V(1)^{\otimes d})^{\otimes r} = V(1)^{\otimes rd} = V(d)^{\otimes r} \oplus$ other, End_{U_q} $(V_{\widetilde{A}}(d)^{\otimes r})$ is realised as a subalgebra (and quotient algebra) of End_{U_q} $(V(1)^{\otimes rd}) \simeq TL_{rd}(\widetilde{A})$ as follows.

Write $p = p_d \otimes p_d \otimes \ldots \otimes p_d \in \mathrm{TL}_{rd}(\widetilde{A})$ (*r* factors in *p*)

Write $p = p_d \otimes p_d \otimes \ldots \otimes p_d \in \mathrm{TL}_{rd}(\widetilde{A})$ (*r* factors in *p*) Then $\mathrm{End}_{\mathrm{U}_q}(V_{\widetilde{A}}(d)^{\otimes r}) \simeq p\mathrm{TL}_{rd}(\widetilde{A})p$ (a contraction).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Write
$$p = p_d \otimes p_d \otimes \ldots \otimes p_d \in \mathrm{TL}_{rd}(\widetilde{A})$$
 (*r* factors in *p*)

Then $\left| \operatorname{End}_{U_q}(V_{\widetilde{A}}(d)^{\otimes r}) \simeq \rho \operatorname{TL}_{rd}(\widetilde{A}) \rho \right|$ (a contraction).

This algebra may be realised diagramatically. It is generated by Temperley-Lieb diagrams like this:

Write
$$p = p_d \otimes p_d \otimes \ldots \otimes p_d \in \mathrm{TL}_{rd}(\widetilde{A})$$
 (r factors in p)

Then $\left| \operatorname{End}_{U_q}(V_{\widetilde{A}}(d)^{\otimes r}) \simeq \rho \operatorname{TL}_{rd}(\widetilde{A}) \rho \right|$ (a contraction).

This algebra may be realised diagramatically. It is generated by Temperley-Lieb diagrams like this:

Here is another diagram:

Here is another diagram:

. . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Here is another diagram:

What about braids?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Here is another diagram:

What about braids?

The braid generator R_{i-1} is sent under $\mu_r : \mathcal{B}_r \to \operatorname{End}_{\operatorname{U}_q}(V(d)^{\otimes r})$ to a polynomial $f_d(g_{i-1})$, where g_{i-1} is the first diagram above, and

Here is another diagram:

What about braids?

The braid generator R_{i-1} is sent under $\mu_r : \mathcal{B}_r \to \operatorname{End}_{\operatorname{U}_q}(V(d)^{\otimes r})$ to a polynomial $f_d(g_{i-1})$, where g_{i-1} is the first diagram above, and

where $f_d(t) = a_d t^d + a_{d-1} t^{d-1} + \cdots + a_0$ $(a_i \in \mathbb{C}(q))$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The rational functions $a_i(q)$ have denominators which are polynomials; these imply limitations on values of q

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The rational functions $a_i(q)$ have denominators which are polynomials; these imply limitations on values of q

Theorem

(Andersen, L, R. Zhang) The algebra $\operatorname{End}_{\operatorname{U}_q}(V_{\widetilde{A}}(d)^{\otimes r})$ has a cellular structure, with cellular basis the set $\{pDp\}$, where D is a diagram in TL_{rd} such that $L(D) \cup R(D) \subseteq \{d, 2d, \dots, (r-1)d\}$.

(日) (日) (日) (日) (日) (日) (日)

The rational functions $a_i(q)$ have denominators which are polynomials; these imply limitations on values of q

Theorem

(Andersen, L, R. Zhang) The algebra $\operatorname{End}_{U_q}(V_{\widetilde{A}}(d)^{\otimes r})$ has a cellular structure, with cellular basis the set $\{pDp\}$, where D is a diagram in TL_{rd} such that $L(D) \cup R(D) \subseteq \{d, 2d, \dots, (r-1)d\}.$

L(D) is is the set of left vertices of the small upper arcs of D R(D) is the same, for the lower arcs.

The rational functions $a_i(q)$ have denominators which are polynomials; these imply limitations on values of q

Theorem

(Andersen, L, R. Zhang) The algebra $\operatorname{End}_{U_q}(V_{\widetilde{A}}(d)^{\otimes r})$ has a cellular structure, with cellular basis the set $\{pDp\}$, where D is a diagram in TL_{rd} such that $L(D) \cup R(D) \subseteq \{d, 2d, \dots, (r-1)d\}.$

L(D) is is the set of left vertices of the small upper arcs of D R(D) is the same, for the lower arcs.

Consequence: we can determine for which specialisations $q \mapsto \zeta$, the module $V(d)_{\zeta}^{\otimes r}$ is completely reducible.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$ Note that $\text{TL}_{rd}(\zeta)$ is semisimple if and only if $|\zeta^2| > dr$

(日) (日) (日) (日) (日) (日) (日)

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$ Note that $\operatorname{TL}_{rd}(\zeta)$ is semisimple if and only if $|\zeta^2| > dr$ Further consequence: by analysing the composition factors of the tilting module direct summands of $V_{\zeta}(d)^{\otimes r}$, it is straightforward to determine the socle $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$.

(日) (日) (日) (日) (日) (日) (日)

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$

Note that $\operatorname{TL}_{rd}(\zeta)$ is semisimple if and only if $|\zeta^2| > dr$

Further consequence: by analysing the composition factors of the tilting module direct summands of $V_{\zeta}(d)^{\otimes r}$, it is straightforward to determine the socle $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$.

And: $E_{\zeta} := \operatorname{End}_{U_q}(V_{\zeta}(d)^{\otimes r})$ (a quotient of the Braid group ring) acts on $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$ with invariant positive definite Hermitian form.

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$

Note that $\operatorname{TL}_{rd}(\zeta)$ is semisimple if and only if $|\zeta^2| > dr$

Further consequence: by analysing the composition factors of the tilting module direct summands of $V_{\zeta}(d)^{\otimes r}$, it is straightforward to determine the socle $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$.

And: $E_{\zeta} := \operatorname{End}_{U_q}(V_{\zeta}(d)^{\otimes r})$ (a quotient of the Braid group ring) acts on $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$ with invariant positive definite Hermitian form.

The above result is valid for all ζ with $|\zeta| > d$, and provides a large set of examples of unitarisable braid group actions.

Roughly: $V(d)_{\zeta}^{\otimes r}$ is completely reducible if $|\zeta^2| > \frac{dr}{2}$

Note that $\operatorname{TL}_{rd}(\zeta)$ is semisimple if and only if $|\zeta^2| > dr$

Further consequence: by analysing the composition factors of the tilting module direct summands of $V_{\zeta}(d)^{\otimes r}$, it is straightforward to determine the socle $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$.

And: $E_{\zeta} := \operatorname{End}_{U_q}(V_{\zeta}(d)^{\otimes r})$ (a quotient of the Braid group ring) acts on $\operatorname{soc}(V_{\zeta}(d)^{\otimes r})$ with invariant positive definite Hermitian form.

The above result is valid for all ζ with $|\zeta| > d$, and provides a large set of examples of unitarisable braid group actions.

