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Background

Let g be a finite dimensional simple Lie algebra over C

Examples: g = sl(n,C), g = g2(C), g = sp(2n,C), etc.
The associative algebra U = U(g), is the universal enveloping
algebra of g
Drinfeld and Jimbo have defined a quantum deformation
Uq = Uq(g) of U as Hopf algebra. This is a Hopf algebra over
C(q).
If V , W are g-modules (equivalently: U-modules), then U acts
on V ⊗W via ∆ : U→ U⊗U.
u · v ⊗w = ∑i xiv ⊗ yiw if ∆(u) = ∑i xi ⊗ yi .

In particular: U acts on T r (V ) = V⊗r for all r
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Classical invariant theory

Classical invariant theory asks: determine the structure of
EndU(V⊗r ) for certain V , all r .

‘Determine’ means: find generators (FFT) and relations (SFT)
for the associative algebra End(V⊗r )U.

Cases where this has been solved (from antiquity):
g = gl(n,C), V = Cn (‘natural’ representation):

In this case we have CSymr
ηr−→EndU(V⊗r ). Permutations act

by permuting factors in tensors-OK because U is
cocommutative (∆(X ) = X ⊗ 1 + 1⊗ X for X ∈ g).
FFT: ηr is surjective; SFT: ker(ηr ) is generated by the
idempotent in CSymn+1 corresponding to the alternating
representation. (All due to Schur, 1901).
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Further cases where the FFT and SFT are known

g = o(n,C) (ε = +1) or g = sp(2n,C) (ε = −1). Here we have

νr : Br (εn)−→EndU(V⊗r ), where Br (δ) is the Brauer algebra
on r strings, with parameter δ.

FFT: νr is surjective (Brauer 1937).

SFT: ker(νr ) is generated by a certain explicit idempotent En in
Bn+1(εn) (L-Zhang, 2012)

In the symplectic case, En is the central idempotent
corresponding to the trivial representation of Bn+1(−n)

Remarkably, it is simply the sum of all the (2n)!
2nn! diagrams in

Bn+1(−n), each with coefficient 1.

In the orthogonal case, En is explicitly described in terms of
diagrams, all of which have coefft ±1.
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The case of Lie superalgebras
When g = g0̄ ⊕ g1̄ with g0̄ the even subalgebra and g1̄ the odd
part, similar results apply, although the statements and proofs
are more involved

It is still the case that if V = Cm|2n, and g = osp(m|2n),
G = OSp(m|2n) (the orthosymplectic group scheme), then
There is a homomorphism µr : Br (m− 2n)−→EndG(V⊗r ), and
µr is surjective (the FFT).
ker(µr ) may be characterised linearly (the SFT), but there is no
result about being generated by an idempotent.
If we replace G by osp(V ), then an additional endomorphism,
which arises from the super-Pfaffian Ω, is required if m is even.
If B(−,−) is the orthosymplectic form on V , then

Ω =
√

det(B(vi , vj))2n+1, where this is regarded as a function of
(v1, . . . , vm) ∈ V m.
It is a fact that Ω is alternating for OSp(V ), and is a polynomial
function of degree m(2n + 1) on V .
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The case sl2

There are solutions (FFT and SFT) which we shall discuss later
in the quantum setting

when g = sl2(C) and V is any Weyl module (simple
representation in this context)
In the quantum case, contractions of the Temperley-Lieb
algebra by iterations of the Jones-Wenzl idempotent are the
relevant finite dimensional algebras.
We’ll see this later.

This will provide a source of unitarisable braid group actions on
tensor space, where the braid generators satisfy polynomial
equations of arbitrarily high order.
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Endomorphisms of tensor powers–the quantum case.
g as above: a finite dimensional reductive complex Lie algebra;
U(g) = U(g) its universal enveloping algebra, and Uq = Uq(g)
its Drinfeld-Jimbo quantisation over K := C(q), q an
indeterminate.

Corresponding to g there is a root system Φ ⊂ h∗, where h is a
Cartan subalgebra, and we assume chosen a set
{α1, . . . ,αr} ⊂ Φ of simple roots. There is a canonical bilinear
form (−,−) on h∗ such that (α,α) = 2 for short roots α.
As usual, we write X for the lattice of weights of g;
X = {λ ∈ h∗ | (α, λ) ∈ Z} for all α ∈ Φ.
Uq has generators Ei , Fi , k±1

i , i = 1, . . . , r . It is a Hopf algebra,
and we have (e.g.) ∆(Ei) = Ei ⊗ ki + 1⊗ Ei . A sample relation:
kiEjk−1

i = q(αi ,αj )Ej .
If V is a representation of Uq, v ∈ V is a weight vector of
weight λ ∈ X if kiv = q(λ,αi )v for all i . Say V is of type
(1, 1, . . . , 1) if it is a sum of weight spaces.
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Quantum (ctd)

The category Cq of representations of Uq of type (1, 1, . . . , 1) is
equivalent to the category C of finite dimensional
representations of g.
If V is a representation of g, write Vq for the corresponding
Uq-module. Then V , Vq have precisely the same weights.
The key tool in analysing V⊗r

q is Drinfeld’s R-matrix;

R ∈ Ũq ⊗Uq, (a ‘completion’). Its main properties are:

(i) For x ∈ Uq, R∆(x)R−1 = ∆′(x) (opposite comult.)

If W1, W2, W3 ∈ Cq, and R12 denotes R ⊗ idW3 etc, then

(ii) R12R13R23 = R23R13R12 ∈ End(W1 ⊗W2 ⊗W3)

(Yang-Baxter equation).
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R-matrices

(i),(ii) imply that if Ř = τ ◦R (τ(w ⊗w ′) = w ′ ⊗w) then

Ř12Ř23Ř12 = Ř23Ř12Ř23

in HomUq (W1 ⊗W2 ⊗W3, W3 ⊗W2 ⊗W1)

Taking Wi = V for all i , and writing Ri for Ř acting on the i , i + 1
components of V⊗r ,
RiRi+1Ri = Ri+1RiRi+1 for all i (BRAID RELATION!)

This shows that if V ∈ Uq −mod we have
βr : KBr−→EndUq (V⊗r )

Questions: When is βr surjective? (FFT); What is ker(βr )?
(SFT)
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in HomUq (W1 ⊗W2 ⊗W3, W3 ⊗W2 ⊗W1)

Taking Wi = V for all i , and writing Ri for Ř acting on the i , i + 1
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Sufficiency of braids

The map βr is surjective for all r if (g, V ) is a strongly multiplicity
free pair.
Included are: (sln, natural or its dual)
(g2, 7 dimensional representation)

(sl2, ANY irreducible)

g = on, or sp2n, V = the natural module.

Theorem
(L-R. Zhang (Sydney), H. Zhang (Tsinghua) 2016) βr is
surjective when Uq is the quantised enveloping algebra
assiciated with the Lie superalgebra g = osp(m|2n,C) and
V = Cm|2n.
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Quantum sl2

To study the braid group action, I want now to focus on the case
g = sl2, with V the highest weight module of highest weight d
(and dimension d + 1).
As we are interested in unitarisability, we work over a subring
A = Z[q±1] of C(q). Sometimes we take a slightly larger ring
Ã ⊇ A.
We first consider the case d = 1 (2-diml rep.)
Here VA(1)⊗ VA(1) = VA(0)⊕ VA(2), and with appropriate
renormalisation, Ř acts on VA(0) and VA(2) with eigenvalue
q,−q−1 respectively. So (Ri − q)(Ri + q−1) = 0
Now ABr/〈(Ri − q)(Ri + q−1)〉 ' Hr (q), which has A-basis
{Tw | w ∈ Symr}

µr : ABr−→EndUq(sl2)

(
VA(1)⊗r ) is surjective, with kernel

〈a3(q) := ∑w∈Sym3
(−q)−`(w)Tw 〉
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Enter Temperley-Lieb

So EndUq(sl2)

(
VA(1)⊗r ) ' Hr (q)/〈a3(q)〉 ' TLr (q)

This algebra may be realised in terms of diagrams like this

1 2 3 4 5 6

1 2 3 4 5 6

In terms of the Hecke algebra, the generators are fi = Ti + q−1,
so that f 2

i = (q + q−1)fi . fi is depicted by:

1 i i+1 r

1 i i+1 r

· · · · · ·

· · · · · ·



Enter Temperley-Lieb
So EndUq(sl2)

(
VA(1)⊗r ) ' Hr (q)/〈a3(q)〉 ' TLr (q)

This algebra may be realised in terms of diagrams like this

1 2 3 4 5 6

1 2 3 4 5 6

In terms of the Hecke algebra, the generators are fi = Ti + q−1,
so that f 2

i = (q + q−1)fi . fi is depicted by:

1 i i+1 r

1 i i+1 r

· · · · · ·

· · · · · ·



Enter Temperley-Lieb
So EndUq(sl2)

(
VA(1)⊗r ) ' Hr (q)/〈a3(q)〉 ' TLr (q)

This algebra may be realised in terms of diagrams like this

1 2 3 4 5 6

1 2 3 4 5 6

In terms of the Hecke algebra, the generators are fi = Ti + q−1,
so that f 2

i = (q + q−1)fi . fi is depicted by:

1 i i+1 r

1 i i+1 r

· · · · · ·

· · · · · ·



Enter Temperley-Lieb
So EndUq(sl2)

(
VA(1)⊗r ) ' Hr (q)/〈a3(q)〉 ' TLr (q)

This algebra may be realised in terms of diagrams like this

1 2 3 4 5 6

1 2 3 4 5 6

In terms of the Hecke algebra, the generators are fi = Ti + q−1,
so that f 2

i = (q + q−1)fi . fi is depicted by:

1 i i+1 r

1 i i+1 r

· · · · · ·

· · · · · ·



Enter Temperley-Lieb
So EndUq(sl2)

(
VA(1)⊗r ) ' Hr (q)/〈a3(q)〉 ' TLr (q)

This algebra may be realised in terms of diagrams like this

1 2 3 4 5 6

1 2 3 4 5 6

In terms of the Hecke algebra, the generators are fi = Ti + q−1,
so that f 2

i = (q + q−1)fi . fi is depicted by:

1 i i+1 r

1 i i+1 r

· · · · · ·

· · · · · ·



Higher dimensional sl2-modules.

We realise V (d) through V (1)⊗d ' V (d)⊕ V ′,
where V ′ is a sum of simple modules of highest weight d ′ < d .
Lemma: The projection pd : V (1)⊗d−→V (d) is the image in
TLd of the idempotent ed = Pd (q)−1

∑w∈Symd
q`(w)Tw ∈ Hd (Ã),

where Pd (q) = qd(d−1)/2[d ]q! and Ã = A
[
[d ]−1] (Jones-Wenzl

idempotent!)

Since
(
V (1)⊗d)⊗r

= V (1)⊗rd = V (d)⊗r ⊕ other,
EndUq (VÃ(d)⊗r ) is realised as a subalgebra (and quotient

algebra) of EndUq (V (1)⊗rd ) ' TLrd (Ã) as follows.
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where Pd (q) = qd(d−1)/2[d ]q! and Ã = A
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where Pd (q) = qd(d−1)/2[d ]q! and Ã = A
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EndUq(VÃ(d)
⊗r) in terms of diagrams

Write p = pd ⊗ pd ⊗ . . .⊗ pd ∈ TLrd (Ã) (r factors in p)

Then EndUq (VÃ(d)⊗r ) ' pTLrd (Ã)p (a contraction).

This algebra may be realised diagramatically. It is generated by
Temperley-Lieb diagrams like this:

1 id id+1 drd (i-1)d+1 d(i+1) (r-1)d+1

· · · · · ·

pd pd pd pd

pd pd pd pd

· · · · · · · · · · · ·
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The algebra Er ,d(q) ⊆ TLrd

Here is another diagram:

1 id id+1 drd (i-1)d+1 d(i+1) (r-1)d+1

· · · · · ·

pd pd pd pd

pd pd pd pd

· · ·
· · ·

· · · · · ·

· · ·
· · ·

What about braids?
The braid generator Ri−1 is sent under
µr : Br → EndUq (V (d)⊗r ) to a polynomial fd (gi−1), where gi−1
is the first diagram above, and
where fd (t) = ad td + ad−1td−1 + · · ·+ a0 (ai ∈ C(q)).
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Roots of unity I

The rational functions ai(q) have denominators which are
polynomials; these imply limitations on values of q

Theorem
(Andersen, L, R. Zhang) The algebra EndUq (VÃ(d)⊗r ) has a
cellular structure, with cellular basis the set {pDp}, where D is
a diagram in TLrd such that
L(D)∪R(D) ⊆ {d , 2d , . . . , (r − 1)d}.

L(D) is is the set of left vertices of the small upper arcs of D
R(D) is the same, for the lower arcs.

Consequence: we can determine for which specialisations
q 7→ ζ, the module V (d)⊗r

ζ is completely reducible.
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Roots of unity II

Roughly: V (d)⊗r
ζ is completely reducible if |ζ2| > dr

2

Note that TLrd (ζ) is semisimple if and only if |ζ2| > dr
Further consequence: by analysing the composition factors of
the tilting module direct summands of Vζ(d)⊗r , it is
straightforward to determine the socle soc(Vζ(d)⊗r ).
And: Eζ := EndUq (Vζ(d)⊗r ) (a quotient of the Braid group ring)
acts on soc(Vζ(d)⊗r ) with invariant positive definite Hermitian
form.
The above result is valid for all ζ with |ζ | > d , and provides a
large set of examples of unitarisable braid group actions.
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