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Introduction

Detecting topological order

Given access to the ground state:
Topological entanglement entropy S(ρR) = α|∂R| − γ +O(|R|−1)

γ = log(
√∑

c d2
c ).

Same γ for different TQFT (Heisenberg antiferromagnet on the
Kagome).
γ 6= 0 with no topological order.

Entanglement spectrum ρR = e−Heff .
PEPS description of ground state.

String-like operators that pull through the tensors on the virtual
level.

These all require access to the ground state
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Introduction

Our contribution

A numerical method to detect features of a TQFT without actually
knowing the ground state!
Can extract all the topological S matrix elements.
The numerical problem boils down to 1D DMRG (at the operator
level).
The approach is not rigorous... it works better than it should!
Perhaps it will fail for more challenging models.
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Ribbon operators

Topological order

A 2D system with a degenerate ground state.
Degeneracy depends on the topology.
No local order parameter

Impossible to discriminate between the different ground sates by
looking at a small region.
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Ribbon operators

Anyons

Point-like excitations that can move freely.
Topological charge defined by equivalent class of shallow
quantum circuits (conservation).
Non-trivial braiding.

GS
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Ribbon operators

Degeneracy

Suppose that there is a unique GS, ψ.
Since U1 maps GS to GS, we have U1|ψ〉 = eiφ1 |ψ〉.
Since U2 maps GS to GS, we have U2|ψ〉 = eiφ2 |ψ〉.
This implies U1U2ΠGS = U2U1ΠGS.

U1U2ΠGS 6= U2U1ΠGS implies that the ground state is degenerate.

U1 and U2 are logical operators, i.e., operators which act inside
this degenerate ground space.
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Ribbon operators

Local order parameter?

Can I locally detect that the string operator U1 has been applied?
This would enable me to learn information about which GS the
system is in.

No because the particle can always avoid any topologically trivial
region.

𝜓  vs 𝜓 ?1 2

Deformability of the string operator implies no local order parameter.
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Ribbon operators

Topological data from string operators

a b

Ground space expectation of twist product Ua∞UbΠGS = S̃abΠGS
reveals (close cousin of) topological S-matrix element.
Can be evaluated efficiently from a shallow circuit representation
of Ua/b or MPO representation.
When UaUbΠGS = ηUbUaΠGS for some η 6= 0,1, then S is
non-trivial.
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Ribbon operators

MPO representation

M =
∑

j1,j2,...jn

X j1 ⊗ X j1,j2 ⊗ . . .⊗ X jn−1,jn ⊗ X jn

=

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP
code), the string operators are MPOs (Haah & Preskill).
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Ribbon operators

MPO representation

These exact MPO representations are special:
RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
Quasi-adiabatic evolution.
Dressed by perturbation theory.
MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
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Optimization problem

Objective function

Logical string-like operators should ...
Be supported on a finite-width region R.
Preserve the ground state: [UR

a ,H]ΠGS = 0
Reveal non-trivial topological data UR

a UR′
b ΠGS = ηUR′

b UR
a ΠGS.

Be deformable, i.e. changing the location of R should not affect
the above.

Objective function: C(Ua,Ub, η) =∑
R crosses R′

‖[H,UR
a ]ΠGS‖2+‖[H,UR′

b ]ΠGS‖2+λ‖UR
a UR′

b ΠGS−ηUR′
b UR

a ΠGS‖2

Main assumption: C(Ua,Ub, η) =∑
R crosses R′

‖[H,UR
a ]‖2 + ‖[H,UR′

b ]‖2 + λ‖UR
a UR′

b − ηUR′
b UR

a ‖2
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Optimization problem

Numerical approach

Vectorize matrices:
M = |φ〉〈ψ| → |M〉 = |φ〉 ⊗ |ψ〉.
[H,M]→ (H ⊗ I − I ⊗ H)|M〉

Given UR′
b , topological constraint ‖UR

a UR′
b − ηUR′

b UR
a ‖ is local :

〈UR
a |ŨR∩R′

b |UR
a 〉 for some operator ŨR∩R′

b supported on R ∩ R′

(point).
When H is the sum of local terms, Hamiltonian penalty ‖[H,UR

a ]‖2
becomes an MPO cost function:

〈UR
a |H̃R |UR

a 〉 for some MPO H̃R supported on R.

For fixed UR′
b , objective function is an MPO 〈UR

a |Õ|Ua〉.
Can be solved using DMRG.

To solve for Ua and Ub, alternate between two independent
optimizations.
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Numerical results

Toric-Ising

H = J · Toric − h
2

∑
j(Xj + X †j )− λ

4

∑
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Numerical results
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Numerical results
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Discussion & Conclusion

Why does it work?

ΠGSUR
a ΠGS ⇒ UR

a enforce commutation relation on entire
spectrum.
ΠGSUR

a ΠGS ≈ exp{−H/∆}UR
a exp{−H/∆}.

For a local Hamiltonian, exp{−H/∆} maps a ribbon MPO to a
(fatter and heavier) ribbon MPO.

If the commutations relations can only be achieved on the low energy
sector, given enough width and bond dimension, the minimization
problem should output the projected ribbon operator ΠGSUR

a ΠGS.
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Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32



Discussion & Conclusion

It is possible heuristically to learn topological data from a
Hamiltonian without having access to the ground state.
Numerically equivalent to 1D DMRG.
Why does it work at all?

Why can we replace ground-state expectations by operator
equalities?
Does it rely on the structure of excited states being
weakly-interacting Anyons?
For gapped models, the projected ribbon operator should also be a
ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
Can substitute the twist product by group commutator (simpler).
Any reason this should fail when optimizing the twist product in
non-Abelian models?

Can we extract other topological data from these string operators?
How does our approach compare to an adiabatic evolution
starting from the fixed point?

D. Poulin (Sherbrooke) Ribbon operators Coogee 2016 32 / 32


	Introduction
	Ribbon operators
	Optimization problem
	Numerical results
	 Discussion & Conclusion

