

Topological phases in Tensor Networks: A holographic perspective

Norbert Schuch

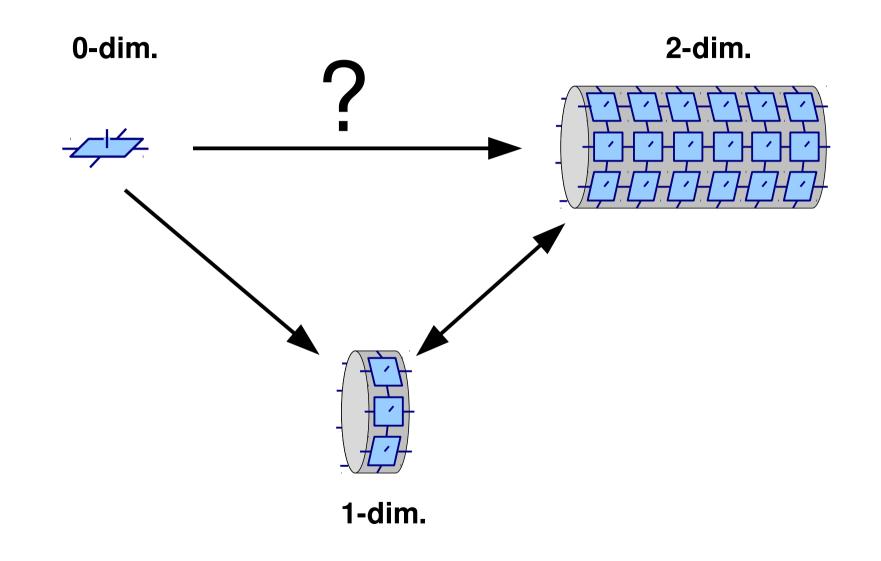
Max-Planck-Institute of Quantum Optics, Munich

Alexander von Humboldt Stiftung/Foundation

joint work with

K. Duivenvoorden (Aachen), M. Iqbal (Munich) and J. Haegeman & F. Verstraete (Gent)

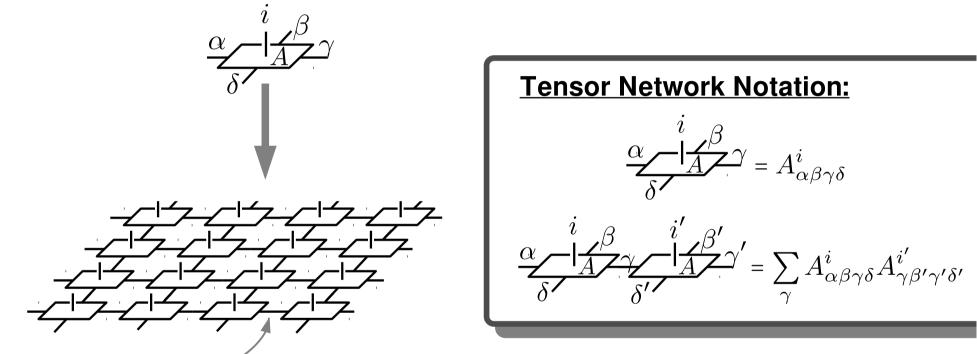
What is this talk about?



MP

Projected Entangled Pair States (PEPS):

local description of strongly correlated many-body states

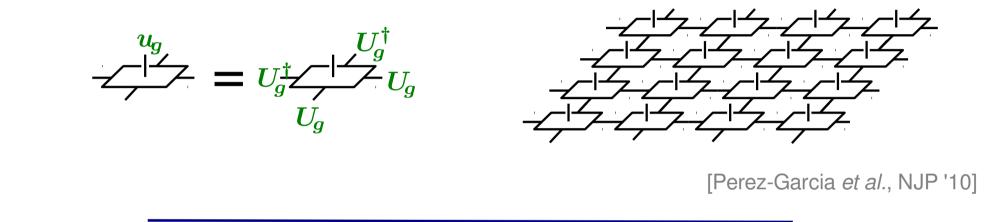


"bond dimension" D –

- faithful approximation of low-energy states of local Hamiltonians [Hastings PRB '06; Molnar, Schuch, Verstraete, Cirac, PRB '14]
- different boundary conditions (open, periodic, infinite plane, ...)

• PEPS allow to encode physical structure (symmetries) locally

E.g.: on-site symmetries:



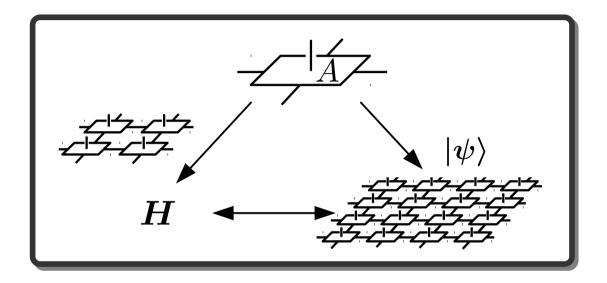
 local parent Hamiltonian: ensure that states looks "locally correct" inherits all symmetries!

$$- \int_{A}^{|A} - \sum_{i \neq j \neq i \neq j}^{A} H = \sum_{i \neq j \neq j}^{A} h_{i}$$

conditions ("... - injectivity") for controlled ground space structure exist

PEPS: unified description of wavefunction + Hamiltonian from single tensor

 \rightarrow construction of **solvable PEPS models**



• *H* inherits symmetries of tensor $A \Rightarrow$ model physics directly into tensor

framework to study strongly correlated systems

How do local properties of tensor relate to globally emerging behavior?

Physical vs. virtual symmetries in PEPS

$$\underbrace{\overset{u_g}{\checkmark}}_{V_g} = \underbrace{V_g^{\dagger}}_{V_g} \overset{V_g^{\dagger}}{\checkmark}_{V_g} \longrightarrow \underbrace{\overset{1}{2}}_{\downarrow} \overset{U_g}{\checkmark}_{\downarrow} = \underbrace{\frac{1}{2}}_{1} \oplus 0 \underbrace{\overset{1}{2}}_{\frac{1}{2}} \oplus 0 \underbrace{\overset{1}{2}}_{\frac{1}{2}} \oplus 0$$

 $ightarrow V_g$ must combine int. and half-int. representations, e.g. $V_g\equiv rac{1}{2}\oplus 0$

• odd of half-int. representations \Rightarrow emergent virtual \mathbb{Z}_2 symmetry

7

$$Z = \begin{pmatrix} -1 & \\ & -1 & \\ & & 1 \end{pmatrix}$$

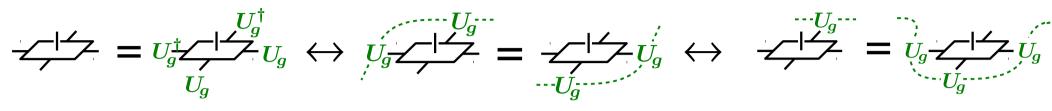
Z counts half-int. spins

What are the implications of a purely virtual symmetry

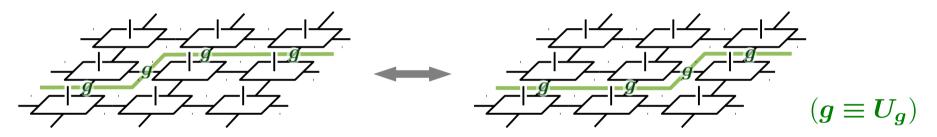
or

$$= U_g^{\dagger} = U_g^{\dagger} = U_g^{\dagger} U_g^{\dagger}$$

Symmetry and pulling through condition



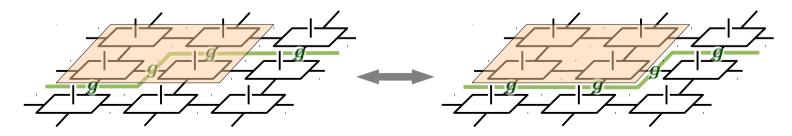
• Consequence of pulling-through: Strings can be freely moved!



[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10; Sahinoglu et al. '14]

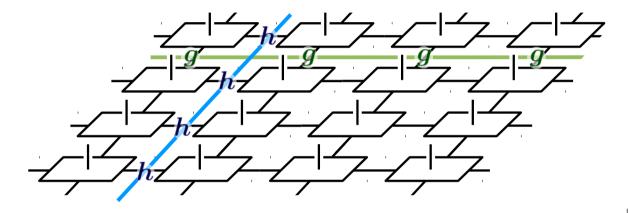
MP

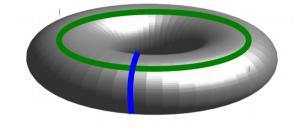
• Strings are invisible to parent Hamiltonian



Symmetry strings & ground state manifold

 Local symmetry in tensor ⇒ parametrization of ground space manifold from a single tensor



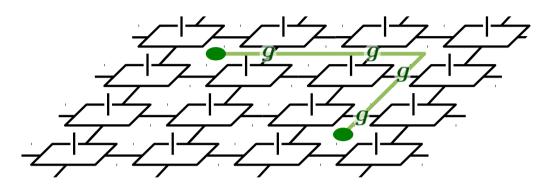


[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

• Ground space degeneracy depends on topology

Symmetry strings and excitations

• Consider strings w/ open ends:



 \rightarrow string invisible to parent Hamiltonian

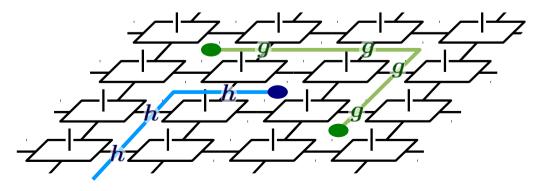
 \rightarrow endpoints (potentially) differ from ground state

 \Rightarrow localized excitations which come in pairs

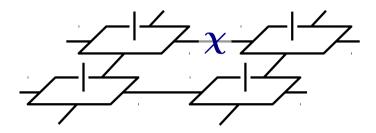
- \rightarrow labelled by (conjucacy classes of) group elements
- \rightarrow braiding acts by conjugation

Anyonic excitations!

("magnetic" excitations)

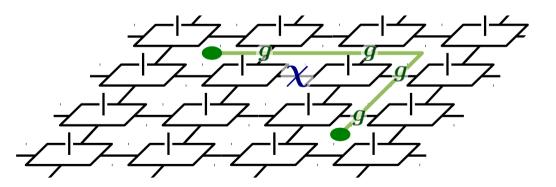


• What other localized excitations are there?



 \rightarrow **local modification** of tensor network, e.g. change one tensor, or place **operator** χ **on link**

- χ can be created locally iff it is a trivial irrep w.r.t. U_g
- Topological excitations \leftrightarrow **non-trivial irreps** χ (e.g., X for Z strings)

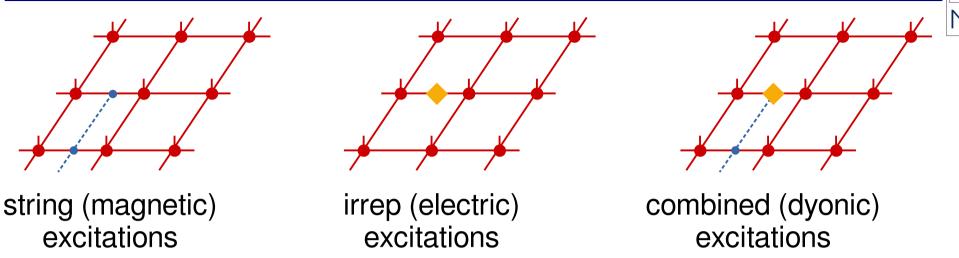


- \rightarrow non-trivial braiding action $\chi(g)$ by pulling magnetic string through
- \rightarrow come in pairs due to global constr.
- \rightarrow "electric" excitations

• General (dyonic) excitation: String (group element) + endpoint (irrep)

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

Requirements for physical excitations



• When do these virtual objects describe real physical excitations?

- must be orthogonal to ground state:

$$\langle \Omega | \; a_i^{\dagger} | \Omega \rangle \equiv \langle a_i^{\dagger} \rangle = \mathbf{0}$$

(if $\langle a_i^\dagger
angle
eq 0$: condensed)

- single excitation well-defined:

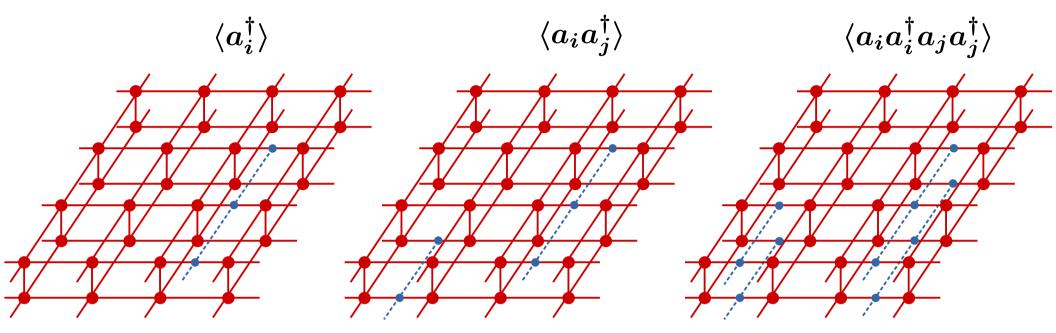
$$\langle a_i a_i^\dagger
angle
eq 0$$

(i.e. massive excitation: $\langle a_i a_j^{\dagger} \rangle \sim e^{-|i-j|/\xi}$)

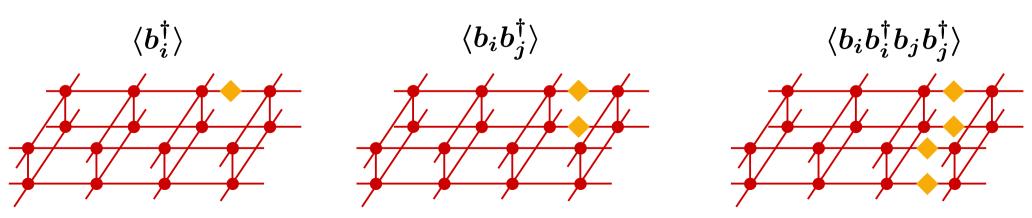
(if
$$\langle a_i a_i^{\dagger} \rangle = 0$$
: confined –
only $\langle a_i a_i^{\dagger} a_j a_j^{\dagger} \rangle \sim e^{-|i-j|\xi}$)

Relevant quantities for topological excitations

• Relevant expectation values for string-like (group action) excitations

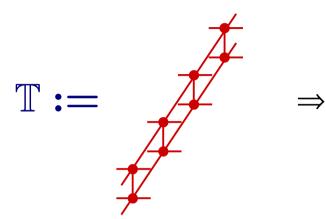


• Relevant expectation values for point-like (irrep action) excitations



The transfer operator

Central object: transfer operator



expectation values for strings + irreps evaluated in left & right fixed point of $\ensuremath{\mathbb{T}}$

- "morally": transfer operator \leftrightarrow quasi-local Hamiltonian via $\mathbb{T} \sim e^{-H}$ fixed point \leftrightarrow ground state
- transfer operator inherits symmetries from tensor:

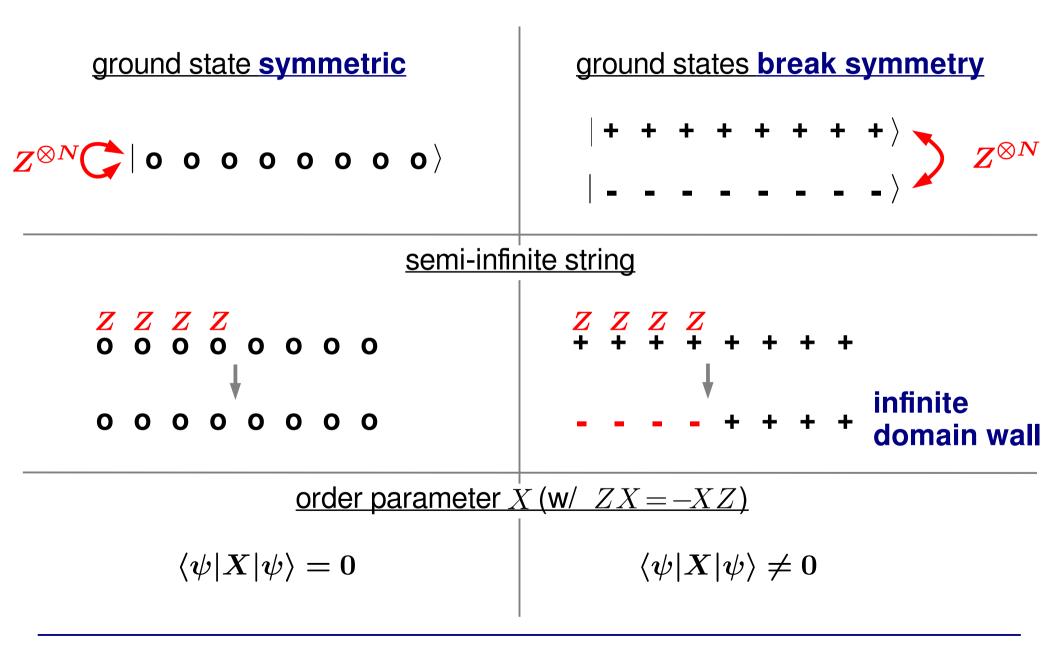
$$- \underbrace{I}_{g} = U_{g}^{\dagger} \underbrace{I}_{U_{g}}^{\dagger} U_{g} \qquad \begin{bmatrix} \mathbb{T}, U_{g}^{\otimes N} \otimes \mathbb{1} \end{bmatrix} = 0 \\ \begin{bmatrix} \mathbb{T}, \mathbb{1} \otimes \bar{U}_{g}^{\otimes N} \end{bmatrix} = 0$$

... & similar for physical symmetries

• What are the **possible behaviors** of the fixed point **w.r.t. symmetries**?

Symmetry breaking

• Hamiltonian w/ symmetry $[H, Z^{\otimes N}] = 0 \rightarrow$ What about ground states?



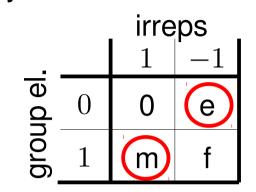
Example I: Toric Code

Example: Toric Code

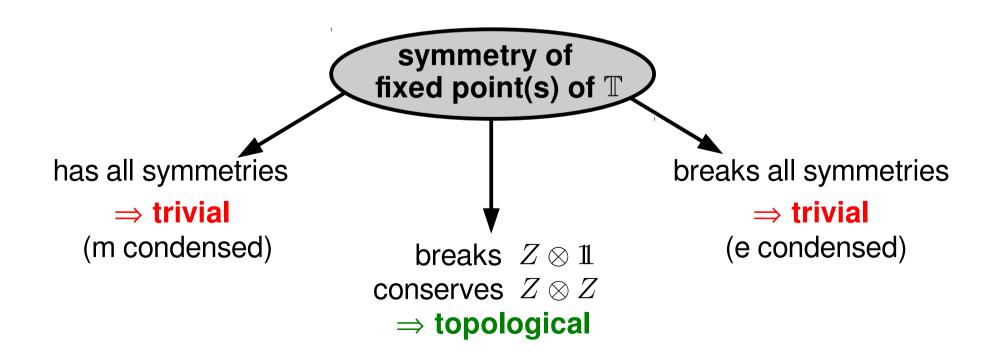
 \mathbb{Z}_2 in ket, bra, and jointly

 $[\mathbb{T}, Z^{\otimes \infty} \otimes \mathbb{1}] = 0$ must behave $[\mathbb{T}, \mathbb{1} \otimes Z^{\otimes \infty}] = 0$ dentically

 $[\mathbb{T}, Z^{\otimes \infty} \otimes Z^{\otimes \infty}] = 0$

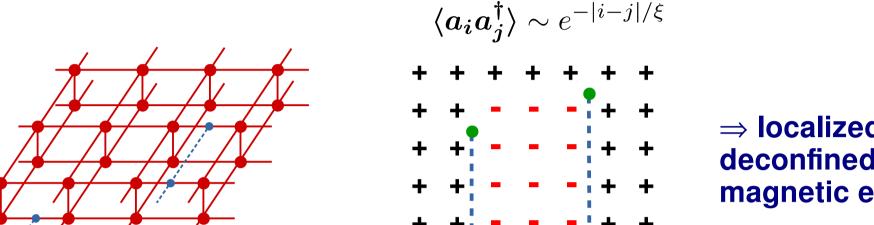


Anyons:



Topological phase

• Symmetries: $Z^{\otimes \infty} \otimes \mathbb{1}$ broken, $Z^{\otimes \infty} \otimes Z^{\otimes \infty}$ conserved



MP

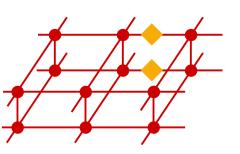
$$= X \otimes X$$

•
$$\{X \otimes X, Z \otimes \mathbb{1}\} = 0$$
 and $[X \otimes X, Z \otimes Z] = 0$

 \Rightarrow order parameter for broken sym. $\Rightarrow \langle b_i b_i^{\dagger} \rangle \neq 0$

• $\{X \otimes \mathbb{1}, Z \otimes Z\} = 0$, symmetry *not* broken $\Rightarrow \langle b_i^{\dagger} \rangle = 0$ $\Rightarrow \langle b_i b_i^{\dagger} \rangle \sim e^{-|i-j|/\xi}$

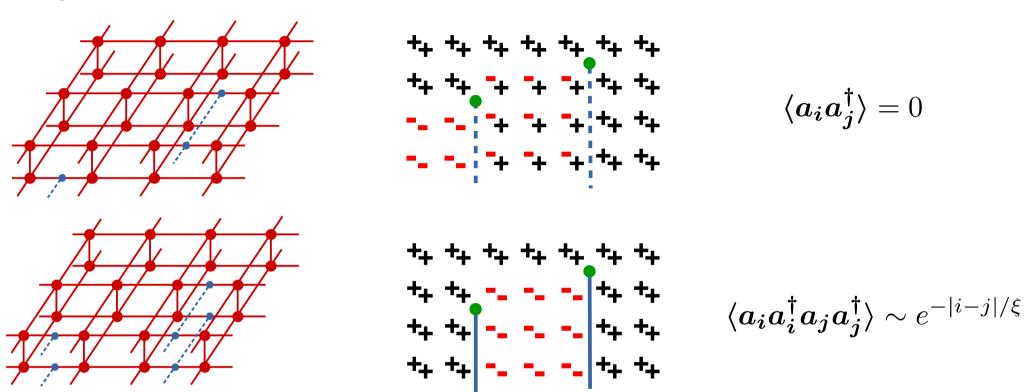
 \Rightarrow localized (massive) deconfined electric excitations



Trivial phase I: Magnon confinement

MPO

• Symmetries: $Z^{\otimes \infty} \otimes \mathbb{1}$ broken and $Z^{\otimes \infty} \otimes Z^{\otimes \infty}$ broken



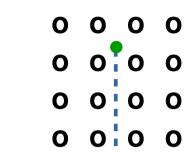
\Rightarrow magnetic excitations become confined

• $\{X \otimes \mathbb{1}, Z \otimes Z\} = 0$, symmetry broken $\Rightarrow \langle b_i^{\dagger} \rangle \neq 0$

 \Rightarrow electric excitations condense into ground state

Trivial phase II: Magnon condensation

no symmetry broken



$$\langle \boldsymbol{a_i^\dagger} \rangle \neq 0$$

 \Rightarrow magnetic excitations condense into ground state

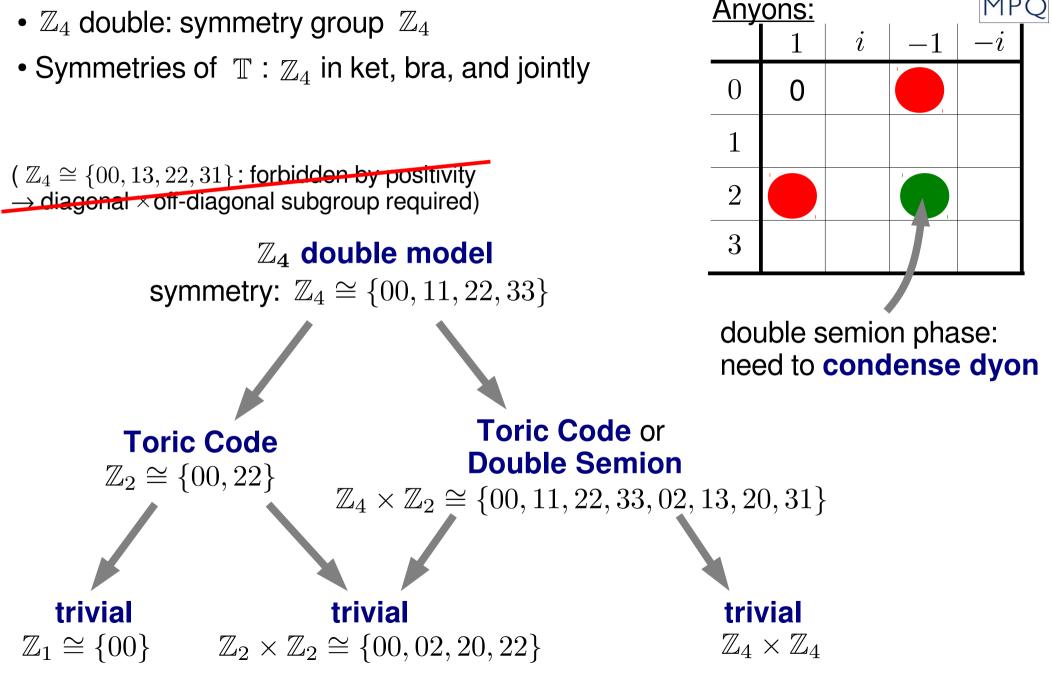
•
$$\{X \otimes X, Z \otimes \mathbb{1}\} = 0$$
, symmetry *not* broken $\Rightarrow \langle b_i b_i^{\dagger} \rangle = 0$

•
$$\langle b_i b_i^{\dagger} b_j b_j^{\dagger} \rangle \sim e^{-|i-j|/\xi}$$

 \Rightarrow electric excitations become confined

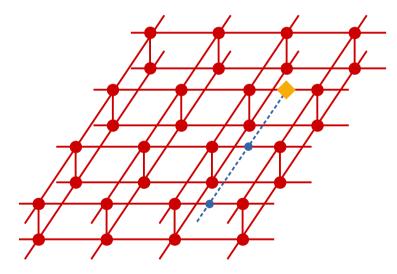
 $= X \otimes X$

Example II: \mathbb{Z}_4 double, Toric Code, Double Semion

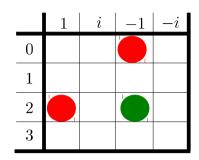


Dyon condensation and SPT phases

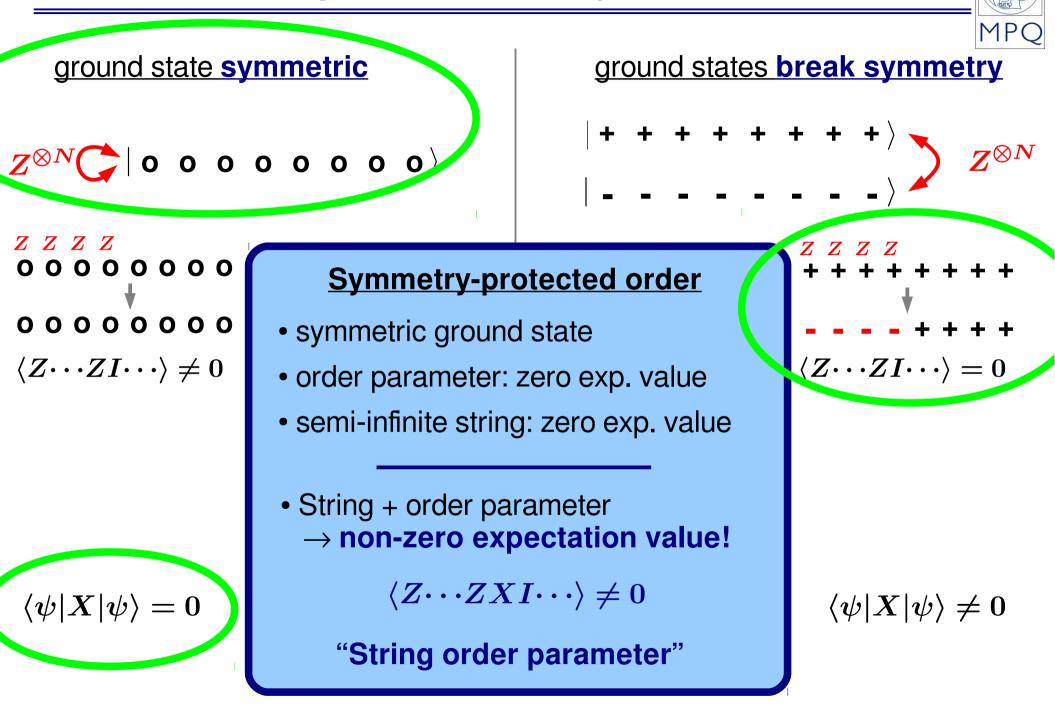
- Difference betw. Toric Code & Double Semion?
 ⇒ Identical symmetry, but inequivalent fixed points of T !
- How to condense a dyon?



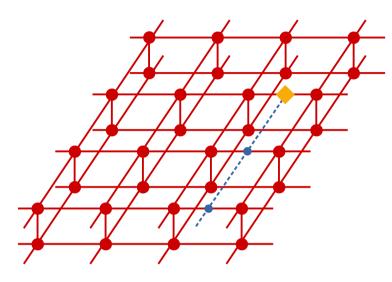
- dyon = symmetry string + order parameter at end
- must have non-zero expectation value
- however: both string & order parameter must individually vanish!



All phases under symmetries



• How to condense a dyon?



- dyon = symmetry string + order parameter at end
- must have non-zero expectation value
- however: both string & order parameter must individually vanish!

• Dyon condensation = symmetry protected order in fixed point of transfer operator (i.e., at the boundary)

- Classification of all topological phases under a given symmetry U_g \Rightarrow full "phase diagram" of \mathbb{T} under symmetry $U_g \otimes \overline{U}_g$
- This includes **both symmetry-breaking and symmetry-protected phases** of the unbroken symmetry!

Conclusions

MP

- **PEPS models**: local tensor \rightarrow wavefunction + Hamiltonian
- topological order in PEPS ↔ symmetry of tensor
- symmetry of tensor \Rightarrow symmetry at the boundary (transfer operator)
- symmetry breaking & SPT phases at boundary ↔ topological phases in the bulk
- study topological phases & phase transitions "holographically" through 1D phases at the boundary

