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What is this talk about?

0-dim. 2-dim.

1-dim.

?



Projected Entangled Pair States

“bond dimension”

Tensor Network Notation:

● Projected Entangled Pair States (PEPS):

● faithful approximation of low-energy states of local Hamiltonians

local description of strongly correlated many-body states

[Hastings PRB '06; Molnar, Schuch, Verstraete, Cirac, PRB '14]

● different boundary conditions (open, periodic, infinite plane, ...)



PEPS: Encoding physics locally
● PEPS allow to encode physical structure (symmetries) locally

E.g.: on-site symmetries:

● local parent Hamiltonian: ensure that states looks “locally correct”
    inherits all symmetries!⇒

=
[Perez-Garcia et al., NJP '10]

● conditions (“... - injectivity”) for controlled ground space structure exist



Projected Entangled Pair State models

●     inherits symmetries of tensor     ⇒ model physics directly into tensor

● PEPS: unified description of wavefunction + Hamiltonian from single tensor
→ construction of solvable PEPS models

 How do local properties of tensor relate to globally emerging behavior?

● framework to study strongly correlated systems



Physical vs. virtual symmetries in PEPS
● Case study: How can we encode spin -    with SU(2) symmetry?

=
⇒       must combine int. and half-int. representations, e.g. 

● odd of half-int. representations ⇒ emergent virtual       symmetry

    counts half-int. spins

=⇒ 

=or

What are the implications of a purely virtual symmetry

?



● Symmetry can be rephrased as “pulling through condition”:
Symmetry and pulling through condition

↔ =

● Consequence of pulling-through: Strings can be freely moved!

● Strings are invisible to parent Hamiltonian

↔

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10; Sahinoglu et al. '14]

= =



Symmetry strings & ground state manifold

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

● Local symmetry in tensor ⇒ parametrization of 
  ground space manifold from a single tensor

● Ground space degeneracy depends on topology



Symmetry strings and excitations
● Consider strings w/ open ends:

→ string invisible to parent Hamiltonian 
→ endpoints (potentially) differ from ground state 

→ labelled by (conjucacy classes of) group elements
→ braiding acts by conjugation

Anyonic excitations!

⇒ localized excitations which come in pairs

(“magnetic” excitations)



More excitations 
● What other localized excitations are there?

→ local modification of tensor network,
e.g. change one tensor, 
or place operator     on link

●      can be created locally iff it is a trivial irrep w.r.t. 

● General (dyonic) excitation: String (group element) + endpoint (irrep) 
[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

→ non-trivial braiding action         
by pulling magnetic string through

→ come in pairs due to global constr.
→ “electric” excitations

● Topological excitations ↔ non-trivial irreps     (e.g.,     for     strings)



Requirements for physical excitations

● When do these virtual objects describe real physical excitations?
- must be orthogonal to ground state: 
     

(if                   : condensed)

- single excitation well-defined:

(i.e. massive excitation:                               ) 

(if                      : confined – 
 only                                      )

string (magnetic)
excitations

irrep (electric)
excitations

combined (dyonic)
excitations



Relevant quantities for topological excitations
● Relevant expectation values for string-like (group action) excitations

● Relevant expectation values for point-like (irrep action) excitations



The transfer operator
● Central object: transfer operator 

=

expectation values for strings + irreps
evaluated in left & right fixed point of      

● transfer operator inherits symmetries from tensor:

… & similar for 
physical symmetries

● “morally”: transfer operator ↔ quasi-local Hamiltonian via

⇒

fixed point ↔ ground state

● What are the possible behaviors of the fixed point w.r.t. symmetries?



Symmetry breaking
● Hamiltonian w/ symmetry     → What about ground states?

ground state symmetric ground states break symmetry
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+ +++---- infinite
domain wall

 semi-infinite string

 order parameter     (w/                      )



Example I: Toric Code

symmetry of 
fixed point(s) of 

has all symmetries breaks all symmetries

breaks 
conserves

 ⇒ topological

 ⇒ trivial  ⇒ trivial

Anyons:

0 e
m f

(m condensed) (e condensed)

          in ket, bra, and jointly
irreps

gr
ou

p e
l.

must behave
identically

Symmetries of      :
Example: Toric Code



Topological phase
● Symmetries:                 broken,            conserved
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 ⇒ localized (massive)
deconfined 
magnetic excitations

●     and  
⇒ order parameter for broken sym. ⇒

●    , symmetry not broken ⇒ 
⇒

 ⇒ localized (massive) deconfined electric excitations



Trivial phase I: Magnon confinement
● Symmetries:             broken and            broken
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 ⇒ electric excitations condense into ground state
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 ⇒ magnetic excitations become confined



Trivial phase II: Magnon condensation
● no symmetry broken 

●   , symmetry not broken ⇒ 

 ⇒ electric excitations become confined

 ⇒ magnetic excitations condense into ground state

o o o o
o o o o
o o o o
o o o o

●  



Example II:      double, Toric Code, Double Semion
●       double: symmetry group      
● Symmetries of      :       in ket, bra, and jointly

Anyons:

0

double semion phase:
need to condense dyon

      double model

Toric Code Toric Code or 
Double Semion

trivial trivial trivial

symmetry:

(                                    : forbidden by positivity
→ diagonal    off-diagonal subgroup required)



Dyon condensation and SPT phases

● Difference betw. Toric Code & Double Semion?
   ⇒ Identical symmetry, but inequivalent fixed points of     ! 

● How to condense a dyon?

- dyon = symmetry string +
order parameter at end

- must have non-zero expectation value
- however: both string & order parameter 

must individually vanish!



All phases under symmetries

ground state symmetric ground states break symmetry

+ ++++++

- - - - -- -

o o o o o o o o
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+ +++++++

+ +++----
Symmetry-protected order

● symmetric ground state

● semi-infinite string: zero exp. value
● order parameter: zero exp. value

● String + order parameter
   → non-zero expectation value!

“String order parameter”



Dyon condensation and SPT phases
● How to condense a dyon?

- dyon = symmetry string +
order parameter at end

- must have non-zero expectation value
- however: both string & order parameter 

must individually vanish!

● Dyon condensation = symmetry protected order 
        in fixed point of transfer operator (i.e., at the boundary)

● Classification of all topological phases under a given symmetry
  ⇒ full “phase diagram” of      under symmetry 

● This includes both symmetry-breaking and symmetry-protected phases 
   of the unbroken symmetry!



Conclusions

● topological order in PEPS ↔  symmetry of tensor

● PEPS models: local tensor → wavefunction + Hamiltonian

● symmetry of tensor ⇒ symmetry at the boundary (transfer operator)
● symmetry breaking & SPT phases at boundary 

↔ topological phases in the bulk
● study topological phases & phase transitions “holographically”
  through 1D phases at the boundary
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