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What is this talk about?

0-dim.

2-dim.
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Projected Entangled Pair States
» Projected Entangled Pair States (PEPS):

local description of strongly correlated many-body states
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Tensor Network Notation:
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“bond dimension” D /

» faithful approximation of low-energy states of local Hamiltonians
[Hastings PRB '06; Molnar, Schuch, Verstraete, Cirac, PRB '14]

» different boundary conditions (open, periodic, infinite plane, ...)




PEPS: Encoding physics locally

* PEPS allow to encode physical structure (symmetries) locally

E.g.: on-site symmetries:
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[Perez-Garcia et al., NJP '10]

* |ocal parent Hamiltonian: ensure that states looks “locally correct”
= inherits all symmetries!

iz 7z H=Y h;

e conditions (“... - injectivity”) for controlled ground space structure exist




Projected Entangled Pair State models

* PEPS: unified description of wavefunction + Hamiltonian from single tensor

— construction of solvable PEPS models

* H inherits symmetries of tensor A = model physics directly into tensor
 framework to study strongly correlated systems

How do local properties of tensor relate to globally emerging behavior?]




Physical vs. virtual symmetries in PEPS

1

 Case study: How can we encode spin -5 with SU(2) symmetry?

L2 =iy, =

= V, must combine int. and half-int. representations, e.g. Vj E%GBO
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* odd of half-int. representations = emergent virtual Z, symmetry

—gﬁ:—z—géz Z:(_l_ll)

Z Z counts half-int. spins

What are the implications of a purely virtual symmetry

:
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Symmetry and pulling through condition

« Symmetry can be rephrased as “pulling through condition”:
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» Consequence of pulling-through: Strings can be freely moved!
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[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10; Sahinoglu et al. '14]

» Strings are invisible to parent Hamiltonian
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Symmetry strings & ground state manifold

* Local symmetry in tensor = parametrization of
ground space manifold from a single tensor
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» Ground space degeneracy depends on topology

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]




Symmetry strings and excitations

 Consider strings w/ open ends:
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— string invisible to parent Hamiltonian
— endpoints (potentially) differ from ground state
= localized excitations which come in pairs
— labelled by (conjucacy classes of) group elements
— braiding acts by conjugation

= 1=z —1=
Anyonic excitations! _—| |_7ﬁr|fiﬁ_g /_|_&
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More excitations

« What other localized excitations are there?

— local modification of tensor network,
e.g. change one tensor,
or place operator x on link

e X can be created locally iff it is a trivial irrep w.r.t. U,

 Topological excitations <> non-trivial irreps x (e.g., X for Z strings)

=z __—1“z_—I“z — non-trivial braiding action x(g)
| ® /Xrl‘%g,ﬂ'ﬁ by pulling magnetic string through
| 2~z 1 — come in pairs due to global constr.

{ | /"%ﬂ/ji/;"ﬁ — “electric” excitations

» General (dyonic) excitation: String (group element) + endpoint (irrep)
[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]




Requirements for physical excitations

string (magnetic) irrep (electric) combined (dyonic)
excitations excitations excitations

* When do these virtual objects describe real physical excitations?

- must be orthogonal to ground state:

Q| al|Q) =(aly =0 (if (al) # 0 : condensed)

- single excitation well-defined:

(a;al) # 0 (if (a;al) = 0: confined -

e N ala.al —[i—7l¢
- only (a;ala;a) ~ e
(i- . massive excitatiorr(aiab ~ € |7 3|/5) y< v J> )




Relevant quantities for topological excitations

 Relevant expectation values for string-like (group action) excitations

T

(al) L (a;a;

* Relevant expectation values for point-like (irrep action) excitations

(bl (b;bl) (bibb;bl)

USRS




The transfer operator

 Central object: transfer operator

expectation values for strings + irreps
evaluated in left & right fixed point of T

T s

« “morally”: transfer operator < quasi-local Hamiltonian viaT ~ e~

fixed point <> ground state

 transfer operator inherits symmetries from tensor:

g @N _ i
L2 = iy, T, U™ @ 1] =0 .. & similar for
Uy

T, 10U =0 physical symmetries

« What are the possible behaviors of the fixed point w.r.t. symmetries?




Symmetry breaking

» Hamiltonian w/ symmetry [H, Z®N]=0 — What about ground states?

ground state symmetric

Z®N( /o 0 000 00 0)

ground states break symmetry
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semi-infinite string
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. infinite
domain wall

order parameter X (W ZX=-XZ)

(Y| X|p) =0

(Y| X|) # 0




Example I: Toric Code

Example: Toric Code Anyons:
Symmetries of T : irreps
7 in ket, bra, and jointly _ 1 -1
- 200 ®
T, Z®° ® ]1] = 0 | must behave g’
T’ 1 ® Z®oo] —0 identically =3 1 @ f
T, Z®° ® Z®>*°] =0
symmetry of
fixed point(s) of T
has all symmetries breaks all symmetries
= trivial = trivial
(m condensed) breaks Z ® 1 (e condensed)

conserves Z ® Z
= topological




Topological phase

« Symmetries: Z®> @ 1 broken, Z®* @ Z®> conserved
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XX, Zl}=0and XX, ZR Z] =0
= order parameter for broken sym. = (bibf{) #0

— localized (massive)
deconfined
magnetic excitations

+ + +
+ + + + +

=X ®X

- {X®1,Z®Z} =0, symmetry notbroken = (bl) =0
— (bib;r-) ~ e li=3l/¢

= localized (massive) deconfined electric excitations




Trivial phase I: Magnon confinement

« Symmetries: Z®>° ® 1 broken and Z®>° @ Z®* broken

Lo T s S T e Tl (aiat) 0

T T —|i—jl/¢
a;a.a;a;) ~ €
++ ++‘-_ - ++ ++ < L Taad ) J>

= magnetic excitations become confined

X
Z‘: + {X®1,Z®Z} =0, symmetry broken = (b1} 0
y y — electric excitations condense into ground state




Trivial phase ll: Magnon condensation

* N0 symmetry broken

0000
o olo o
0 0'0 0 (al) #0
0 0.0 O

= magnetic excitations condense into ground state

=X®X * {X ® X, Z ® 1} = 0, symmetry not broken = (b;bl) = 0

 (biblbsbly ~ i/

— electric excitations become confined




Example II: Z, double, Toric Code, Double Semion

« 74 double: symmetry group Zg A—m@f: -
 Symmetries of T : Z, in ket, bra, and jointl
y 4 J y ol o ‘
1
(Z4 = {00,13,22,31}: ity
i -diagonal subgroup required) 2 ‘
7., double model 3

symmetry: Z, = {00, 11,22, 33}

double semion phase:
need to condense dyon

Toric Code Toric Code or
Z5 = {00, 22} Double Semion

/ \4XZ2N{OO 11,22,33,02,13, 20,31}

trivial trivial trivial
Zq = {00} Zo x 7o =2 {00, 02, 20,22} Ziy X 7y




Dyon condensation and SPT phases

* Difference betw. Toric Code & Double Semion? L 6 i
0
= ldentical symmetry, but inequivalent fixed points of T!
2@ @
3

* How to condense a dyon?

- dyon = symmetry string +
order parameter at end

- must have non-zero expectation value

- however: both string & order parameter
must individually vanish!




All phases under symmetries

ground state symmetric ground states break symmetry
+ o+ o+ o+
Z®N(, /o 0 0 0 0 0 0 0) >Z®N

e e e e e e e )

Symmetry-protected order

000000} .symmetric ground state - ===+ +++
(Z---ZI--) 70 | «order parameter: zero exp. value (Z-++Z1---) =
 semi-infinite string: zero exp. value
* String + order parameter
— hon-zero expectation value!
(1| X|#p) = 0 (Z---ZXI-) 70 (| X|1p) # 0

“String order parameter”




Dyon condensation and SPT phases

* How to condense a dyon?

- dyon = symmetry string +
order parameter at end

- must have non-zero expectation value

- however: both string & order parameter
must individually vanish!

 Dyon condensation = symmetry protected order
In fixed point of transfer operator (i.e., at the boundary)

» Classification of all topological phases under a given symmetry U,
= full “phase diagram” of T under symmetry U, ® U,

* This includes both symmetry-breaking and symmetry-protected phases
of the unbroken symmetry!




Conclusions

 PEPS models: local tensor — wavefunction + Hamiltonian
 topological order in PEPS «» symmetry of tensor
« symmetry of tensor = symmetry at the boundary (transfer operator)

 symmetry breaking & SPT phases at boundary
<> topological phases in the bulk

- study topological phases & phase transitions “holographically”
through 1D phases at the boundary
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