Coogee'16 **Sydney Quantum Information Theory Workshop** Feb 2nd - 5th, 2016

SIMONS FOUNDATION

Coogee'16 Sydney Quantum Information Theory Workshop Feb 2nd - 5th, 2016

SIMONS FOUNDATION

canada

Motivation:

• On the lattice (genuine physics or UV cut-off)

translation? $x \rightarrow x' = x + a$ discrete $a \equiv \text{lattice spacing}$

scale transformation?

Goals:

1) Define a global scale transformation on the l	attice			
Hamiltonian (Hilbert space)	Entanglement renormalization / MERA	PRL 2007 (arXiv:cond-mat/0512165) PRL 2008 (arXiv:quant-ph/0610099)		
Lagrangian (Euclidean path integral)	Tensor network renormalization	Evenbly, Vidal PRL 2015 (arXiv:1412.0732) Evenbly, arXiv:1509.07484		
2) Define a <i>local</i> scale transformation on the lat	tice			
Hamiltonian (Hilbert space)	Entanglement renormalization / MERA	Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637		
Hamiltonian (Hilbert space)	Entanglement renormalization / MERA on-going disc	Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637 ussions with Tobias Osborne and Vaughan Jones		
Hamiltonian (Hilbert space) Lagrangian (Euclidean path integral)	Entanglement renormalization / MERA on-going disc Tensor netwo renormalization	Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637 ussions with Tobias Osborne and Vaughan Jones Evenbly, Vidal, PRL 2015 arXiv:1510.00689		

wave-functions / Hamiltonians *global* scale transformation (RG transformation)

local scale transformations

Euclidean path integrals / classical partition functions

global scale transformation (RG transformation)

local scale transformations

global scale transformation

local scale transformation

wave-functions / Hamiltonians *global* scale transformation (RG transformation)

local scale transformations

Euclidean path integrals / classical partition functions

global scale transformation (RG transformation)

local scale transformations

How do we define a translation on the lattice?

• unitary map $\mathbb{V}^{\otimes N} \to \mathbb{V}^{\otimes N}$

How do we define a scale transformation on the lattice?

- many possibilities
- here, isometric map $\mathbb{V}^{\otimes N/2} \to \mathbb{V}^{\otimes N}$

variational locality entanglement • natural requirement:

reproduce expected RG flow,

including explicit scale invariance at RG fixed-points

Leo Kadanoff 1937 - 2015

PRL 2007 (arXiv:cond-mat/0512165)

Entanglement renormalization

variational optimization (as DMRG, White 1992)

only structural ansatz ask the Hamiltonian H ! (low energy)

 $W: \mathbb{V}^{\bigotimes N/2} \to \mathbb{V}^{\bigotimes N}$ $H \to H' \equiv W^{\dagger} H W$

removal of all short-range entanglement ! failure to remove **some** short-range entanglement ! \mathcal{L}'

PRL 2007 (arXiv:cond-mat/0512165)

PRL 2007 (arXiv:cond-mat/0512165)

Entanglement renormalization

Entanglement renormalization defines a *proper* scale transformation on the lattice

Explicit scale invariance at criticality !

input

PRL 2008 (arXiv:quant-ph/0610099)

PRL 2008 (arXiv:quant-ph/0610099)

 $|\Psi'\rangle$

PRL 2008 (arXiv:quant-ph/0610099)

 $\Psi^{\prime\prime}$

PRL 2008 (arXiv:quant-ph/0610099)

 $\Psi^{\prime\prime\prime}$

MERA defines an RG flow in the space of wave-functions

PRL 2008 (arXiv:quant-ph/0610099)

... and in the space of Hamiltonians

 $H \to H' \to H'' \to H''' \cdots$

wave-functions / Hamiltonians *global* scale transformation (RG transformation)

local scale transformations

Euclidean path integrals / classical partition functions

global scale transformation (RG transformation)

local scale transformations

Claim 1:

MERA defines a *global* scale transformation on the lattice

discrete RG flow with expected structure, including

scale invariance at criticality

Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637

Claim 2:

MERA also defines *local* scale transformations on the lattice

Expected behaviour from continuum (CFT), including

local scale invariance (covariance) at criticality

Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637

Example of local scale transformation on the lattice:

(involving both coarse-graining and fine-graining)

on infinite (discrete) line

Test: compare with CFT in the continuum

Euclidean path integral on half upper plane prepares the ground state

$|\Psi\rangle$

on the infinite line

Euclidean path integral on infinite strip prepares thermal state

 ho_{eta}

[*comment to experts: TFD]

on the infinite line

Can we do the same on the lattice?

Czech, Evenbly, Lamprou, McCandlish, Qi, Sully, Vidal arXiv:1510.07637

conformal transformation $z \to w = \frac{\beta}{\pi} \log(z)$

(but first, let us put it in a finite geometry)

conformal transformation

quotient: half upper plane / scaling = topological cylinder

quotient:
infinite strip / translation
= flat cylinder

thermal state

 ρ_{β}

on finite circle

Luckily, this scaling is an exact symmetry of the MERA

Scaling on a regular MERA without local scale transformation

Scaling on a MERA after a local scale transformation

Scaling on a MERA after a local scale transformation

Thus, under "our" *local scale transformation* on the lattice, the ground state transformed as it would under a local scale transformation in the continuum.

This is evidence that

disentanglers and isometries in MERA

local scale transformations on the lattice Official theme of Coogee'16:

This year, the workshop will have a special focus on the connections between topology, quantum many-body physics, and quantum information...

Illegal sub-theme of Coogee'16:

"semi-continuous limit" of tensor networks / discrete analogue of conformal group

Tobias Osborne: "Effective conformal field theories for tensor network states"

Vaughan Jones: "Quantum spin chains, block spin renormalization, scale invariance and Thompson's groups F and T"

• dyadic rational $\frac{a}{2^b}$

• site: standard dyadic interval

$$\left[\frac{a}{2^{b}}, \frac{a+1}{2^{b}}\right]$$

• dyadic subdivision

• dyadic rearrangement

(Perhaps): Local scale transformations in MERA are Thompson's group F

+ translations: Thompson's group T

wave-functions / Hamiltonians *global* scale transformation (RG transformation)

local scale transformations

Euclidean path integrals / classical partition functions

global scale transformation (RG transformation)

local scale transformations

Euclidean path integral

$$Z(\lambda) = tr \ e^{-\beta H_q^{1d}}$$

$$H_q^{1d} = \sum_i (\sigma_z^i + \sigma_x^i \sigma_x^{i+1})$$

Classical partition function

 $A_{ijkl} = e^{-(\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_l + \sigma_l \sigma_i)/T}$

Euclidean path integral

Statistical partition function

$$Z(\lambda) = tr \ e^{-\beta H_q^{1d}}$$

$$Z(T) = \sum_{\{s\}} e^{-\frac{1}{T}H_{cl}^{2d}}$$

How do we define a global scale transformation on the lattice?

Tensor Network Renormalization (TNR)

Evenbly, arXiv:1509.07484

Tensor Network Renormalization (TNR)

Evenbly, arXiv:1509.07484

Without disentanglers:

(TRG, Levin Nave 2006)

With disentanglers:

(TNR 2014)

unique fixed-point for any *T* in same phase

• at criticality, *approximate* fixed-point

• near criticality...

wave-functions / Hamiltonians *global* scale transformation (RG transformation)

local scale transformations

Euclidean path integrals / classical partition functions

global scale transformation (RG transformation)

local scale transformations

		⇒		7			
							1

Can we do the same on the lattice?

Plane to cylinder

Evenbly, Vidal arXiv:1510.00689

Plane to cylinder

Evenbly, Vidal arXiv:1510.00689

• Extraction of scaling dimensions, OPE

radial quantization in CFT

 $z \equiv x + iy$ (plane)

conformal transformation

$$z \rightarrow w = \log(z)$$

 $w \equiv s + i\theta$ (cylinder)

 $\phi_{\alpha} = 2^{-\Delta_{\alpha}} \phi_{\alpha}$

Evenbly, Vidal arXiv:1510.00689

Evenbly, Vidal arXiv:1510.00689

exact	TNR(6)	TNR(16)	TNR(24)	TRG(80)
0.125	0.125679	0.124941	0.124997	0.124989
1	1.001499	1.000071	1.000009	1.000256
1.125	1.125552	1.125011	1.124991	1.125532
1.125	1.127024	1.125201	1.125027	1.125641
2	2.003355	2.000087	2.000010	2.002235
2	2.003365	2.000133	2.000017	2.002367
2	2.003374	2.000279	2.000022	2.002607
2	2.003525	2.000319	2.000060	2.003926
2.125	2.114545	2.124944	2.124985	2.127266
2.125	2.129043	2.125290	2.125038	2.130337
2.125	2.142611	2.125670	2.125096	2.131299
3	3.005045	3.000524	3.000052	3.007488
3	3.005092	3.000777	3.000061	3.017253
3	3.005259	3.000887	3.000073	3.017316
3	3.005318	3.001010	3.000105	3.020581
3	3.005805	3.001261	3.000206	3.023023
3.125	3.109661	3.124866	3.124889	3.132764
3.125	3.116466	3.125201	3.125019	3.132890
3.125	3.118175	3.125319	3.125059	3.136725
3.125	3.144798	3.126159	3.125099	3.137217
3.125	3.145661	3.126163	3.125158	3.141363
3.125	3.146323	3.126315	3.125172	3.146419
max err.	0.83%	0.046%	0.0069%	0.76%

Euclidean path integral

Euclidean time evolution on different geometries

infinite strip

thermal state

Upper half plane

Evenbly, Vidal, PRL 2015 arXiv:1502.05385

 $|\Psi\rangle{\sim}e^{-\tau H}|\phi_0\rangle$

Upper half plane

1000s of iterations over scale

local minima

correct ground ?

٠

٠

TNR -> MERA

- single iteration over scale
- rewrite tensor network for ground state ٠
- certificate of accuracy ٠

infinite strip of finite width β

Evenbly, Vidal, PRL 2015 arXiv:1502.05385

global scale

transformation

local scale transformation

(RG transformation)

What about 2+1 dimensions? (3+1 ...?)

(QCD?)

What about diffeomorphism invariance on the lattice?

(quantum gravity?)

What about tensor networks in the continuum?

(space-time symmetries)

