
What	is	topological	order?
based	on	work	with	Marius	Lewerenz,	Leander	Fiedler,	Roman	Kossak

topological	



The	vaguest	answer

Start	with	locality Topology ∼ global	stuff
Topological	order	∼ interesting	global	stuff

Why	is	it	useful?
Global	stuff	is	robust	to	local	deformation



The	second	vaguest	answer

Topological	order
=

Things	that	are	like	the	toric code



What	is	topological	about	the	toric code?

Well,	it’s	based	on	a	TQFT
(e.g.	ground	space	and	transformations)



What	is	topological	about	the	toric code?

It’s	a	macroscopic	distance	code
𝑑 = 𝑂 𝐿 = 𝑂( 𝑁� )

𝐿



What	is	topological	about	the	toric code?

It’s	difficult	to	prepare
depth	∼ 𝑂 𝐿 = 𝑂( 𝑁� )



What	is	topological	about	the	toric code?

It’s	very	different	from	a	paramagnet

𝐻 =+𝜎-.
�

.



What	is	topological	about	the	toric code?

It’s	got	topological	invariants



What	is	topological	about	the	toric code?

• Lattice	TQFT
• Macroscopic	distance	code
• Hard	to	prepare
• Not	a	paramagnet
• Topological	invariants



What	do	we	use	topological	order	for?

Topological	codes	– high	fault	tolerance	thresholds

Topological	quantum	computation	– robust	gates

Operational	considerations?



Outline

Part	I:	Zero-temperature
• Classification	strategies
• Existing	definitions
• Relations
• Subtleties

Part	II:	Non-zero	temperature
• Existing	definitions
• Separating	examples



Part	I:	Zero	temperature
aka	pure	state

aka	closed	system



metric

General	setup

𝑁 ≫ 1
finite-dim	spins



What	are	we	even	classifying?

• (Pure)	states
• Arbitrary	states	vs	ground	states	of	gapped	local	Hamiltonians

• Spaces
• Arbitrary	spaces	vs	ground	spaces	of	gapped	local	Hamiltonians

• (Closed)	systems
• Gapped	local	Hamiltonians



Basic	strategies

Direct	definition

1) Define	topological	order
2) Finished

Equivalence	relation

1)	Define	an	equivalence	relation
2)	Define	a	“topologically	trivial”	
representative
3)	Anything	that	is	not	
topologically	trivial	is	topologically	
ordered



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability	
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Pros:
• Well	developed	theory	of	TQFT
• Easy	to	motivate
• Lots	of	interesting	examples

Cons:
• Isn’t	an	easily	checkable	criterion
• Very	restrictive	definition

• excludes	e.g.	Haah code



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability	
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Direct	definition	on	spaces

Local	indistinguishability:
𝜓 𝑂23 𝜓 ≈ const.

𝑅



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability	
• LTQO

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Pros:
• Operational	interpretation:	good	
code	against	local	errors
• Physical	consequences:	with	other	
conditions,	implies	perturbative	
stability

Cons:
• All	1-dim	spaces	are	locally	
indistinguishable	(paramagnet)



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Equivalence	relation	on	states

𝜓 ∼ 𝜙
iff there	exists	local	unitary	circuit	𝑈

𝜓 = 𝑈|𝜙〉

0 ⊗< is	trivial

depth	=	O(1)



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Pros:
• Defines	topological	order	for	all	
states
• Easy	to	work	with
• Local	operators	mapped	to	local	
operators,	global	operators	
mapped	to	global	operators

Cons:
• A	little	imprecise



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Equivalence	relation	on	Hamiltonians

𝐻= ∼ 𝐻>
iff there	exists	a	uniformly	gapped	

smooth	path	𝐻(𝑠) with
𝐻= = 𝐻 0 and	𝐻> = 𝐻(1)

𝐻=

𝐻>

𝐻@ABA =+𝜎-.
�

.



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Pros:
• Physically	motivated:	ground	state	
energy	is	analytic	if	gap	stays	open
• Implies	existence	of	quasi-adiabatic	
continuation	between	ground	
spaces	⇒ stability

Cons:
• Only	works	for	gapped	
Hamiltonians



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Direct	definition	on	states

Topological	entanglement	entropy:
𝛾 = 𝑆F + 𝑆H + 𝑆I − 𝑆FH − 𝑆HI − 𝑆IF + 𝑆FHI

𝐴 𝐵

𝐶



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO	

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants

Pros:
• Direct	motivation	from	TQFT
• Simple
• Easily	verified
• Can	distinguish	some	phases

Cons
• Not	always	well-defined
• Can	be	tricked



Aside:	fixing	up	the	TEE

Bravyi counterexample	strings	give	
anomalous	contribution	to	TEE.

If	we	average	over	the	whole	phase,	this	
should	wash	out.

But	what	is	a	sensible	measure	over	a	phase?



Definitions

• Lattice	TQFTs
• Macroscopic	distance	code

• Local	indistinguishability
• LTQO

• Hard	to	prepare
• Local	unitary	circuit	equivalence

• Not	a	paramagnet
• Gapped	path	equivalence

• Topological	invariants
• Topological	entanglement	entropy	
• Haah invariants



Relations	between	definitions

• A	TQFT	has	nonzero	TEE
• A	TQFT	satisfies	LTQO
• TEE,	if	properly	defined,	should	be	invariant	under	local	unitaries and	
gapped	paths
• A	TQFT	is	local-unitary	non-trivial
• A	TQFT	is	gapped-path	non-trivial
• Local	indistinguishability	is	preserved	under	local	unitaries and	gapped	
paths
• Local	unitaries and	gapped	paths,	properly	defined,	should	be	equivalent	
(on	ground	states	of	gapped	Hamiltonians)



(Idealized)	relations	between	definitions

TEE LTQO

Local-unitaryGapped-path

TQFT

Topological	phase



From	gapped	paths	to	local	circuits



From	gapped	paths	to	local	circuits

• This	is	basically	evolution	under	a	(quasi)-local	Hamiltonian
• We	can	just	Trotterize!

…	up	to	errors

…	which	don’t	play	nicely



Controlling	errors

We	can	approximate	a	quasi-adiabatic	continuation	by	breaking	it	into	
strictly	local	pieces:

𝑉 − (𝑉3⊗ 𝑉3O) ⋅ 𝑉Q3(R) ≤ 𝑓 𝑑 ⋅ |𝜕𝑅|

𝑅

𝑑



Controlling	errors

Break	up	the	(2d)	lattice	into	4	pieces
Recursively	split	up	the	QAC

Now	everything	is	local
Error	is	under	control

𝐴 𝐵

𝐶 𝐷

𝐿

2𝑑



Aside:	an	application

• The	procedure	only	uses	Lieb-Robinson	bounds
• Equally	well	applies	to	simulation	of	local	Hamiltonian	dynamics
• Previously	known	in	1D,	now	in	any	finite	dim	Euclidean	space



Topology	sensitivity

• Should	the	toric code	on	the	sphere	be	in	the	same	phase	as	the	toric
code	on	the	torus?	

• Equivalence	up	to	local	indistinguishability	=	equivalence	of	local	
patches



Notable	generalizations

• Add	symmetries	to	phase	classifications
• SPT	/	SET

• Quasi-topological	order



Part	II:	Finite	temperature
aka	mixed	state
aka	open	system



What	are	we	even	classifying?

• Mixed	states
• Arbitrary	states	vs	thermal	states	of	gapped	local	Hamiltonians

• Open	systems
• Gapped	local	Hamiltonians	under	thermalizing	dynamics
• General	Liouvillians



What	should	be	topologically	ordered?

Topologically	ordered	pure	states
Low	temperature	thermal	states	of	4D	toric code														(self-correcting)

Low	temperature	thermal	states	of	3D	toric code														(non-zero	TMI)

Thermal	states	of	Haah code
Thermal	states	of	2D	toric code



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

𝜌 is	trivial	if	a	spin	𝐾. can	be	
added	at	each	site	𝑖,	and	a	local	
unitary	circuit	𝑈 found	such	that

𝜌 = tr](𝑈𝜌^_𝑈`)	

for	some	“classical”	state:
𝜌^_ ∝ exp	(−𝛽𝐻^_)



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Pros:
• Tractable	criterion
• Often	gives	“right”	answer
• Most	of	the	way	to	an	equivalence	
relation

Cons:
• Not	so	easily	motivated
• Tailored	to	thermal	states
• Does	it	always	give	“right”	answer?



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

𝜌 is	trivial	if	there	exists	a	local	
purification	of	it	that	is	pure-state	

trivial



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Pros:
• Easily	connects	to	pure	state	
definitions

Cons:
• Difficult	to	check
• Does	it	give	“right”	answers?



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

𝜌 is	trivial	if	there	exists	local	CPTP	
circuit	𝒞 such	that

𝜌 = 𝒞(|0〉〈0|⊗<)



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Pros:
• Connects	intuitively	with	pure-
state	case
• Half-way	to	an	equivalence	
relation

Cons:
• Difficult	to	check
• Does	it	give	“right”	answers?



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

𝜌 is	trivial	if	it	can	be	written	as	a	
convex	combination	of	

topologically	trivial	pure	states



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Pros:
• Connects	easily	to	pure-state	
case
• Operationally	motivated

Cons:
• Difficult	to	check
• Does	it	give	“right”	answer?



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Topological	mutual	information:
𝛾 = 𝐼F + 𝐼H + 𝐼I − 𝐼FH − 𝐼HI − 𝐼IF + 𝐼FHI

𝐴 𝐵

𝐶



Definitions

• Not	a	classical	state	(Hastings)
• Local	purification	(Osborne)
• Local	CPTP	circuits	equivalence
• Not	a	mixture	of	trivial	states	
(Osborne)
• Topological	invariants

Pros:
• Easy	to	calculate
• Close	to	pure-state	condition

Cons:
• Not	always	well-defined



How	can	we	test	these	definitions?

• ITO	states
• Critical	classical	states



Invertible	topological	order

|𝜓〉 is	invertibly topologically	ordered	if	it	has	an	“anti-state”

i.e.	|𝜓〉 is	local-unitary	topologically	ordered
and

∃	 𝜙 s.t. 𝜓 ⊗ |𝜙〉 is	local-unitary	trivial



Is	an	ITO	state	topologically	ordered?

Pure	state	definitions

Not	a	classical	state	(Hastings)
Local	purification
Local	CPTP	circuits	equivalence
Not	a	mixture	of	trivial	states
Topological	invariants

ü

ü

ü
ü

û

û



Classical	critical	states

e.g. - thermal	states	of	q-clock	model	at	intermediate	temperature
- critical	thermal	states	of	Ising model

• These	states	have	algebraically	decaying	correlations
• States	with	algebraically	decaying	correlations	are	difficult	to	prepare



Is	a	classical	critical	state	topologically	ordered?

Pure	state	definitions

Not	a	classical	state	(Hastings)
Local	purification
Local	CPTP	circuits	equivalence
Not	a	mixture	of	trivial	states
Topological	invariants

û
ü

û

ü

û



Operational	motivations?

Zero	temperature	TEE Finite temperature	TMI

2D	toric code

3D	toric code

4D	toric code



Operational	motivations?

Zero	temperature	TEE Finite temperature	TMI

2D	toric code 2 0

3D	toric code

4D	toric code



Operational	motivations?

Zero	temperature	TEE Finite temperature	TMI

2D	toric code 2 0

3D	toric code

4D	toric code 2 2



Operational	motivations?

Zero	temperature	TEE Finite temperature	TMI

2D	toric code 2 0

3D	toric code 2 1

4D	toric code 2 2



Big	questions	to	leave	you	with

• What	do	we	want	topological	order	to	mean?
• How	should	we	characterise	topological	phases?
• Is	there	an	operational	definition	for	topological	order?



Advertisement:	Hopf algebras	in	quantum	double	models

Mathematical	connections	from	gauge	theory	to	topological	
quantum	computation	and	categorical	quantum	mechanics

Co-organizers:	Lucy	Zhang	&	Prince	Osei
July	31	– August	4


