What is topological order?

based on work with Marius Lewerenz, Leander Fiedler, Roman Kossak




The vaguest answer

Start with locality Topology ~ global stuff
Topological order ~ interesting global stuff

"OO I Why is it useful?

Global stuff is robust to local deformation




The second vaguest answer

Topological order
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What is topological about the toric code?

00 ;
0
‘- \ Well, it’s based on a TQFT

(e.g. ground space and transformations)




What is topological about the toric code?

It’s @ macroscopic distance code
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What is topological about the toric code?

It’s difficult to prepare
depth ~ O(L) = O(+/N)




What is topological about the toric code?

It’s very different from a paramagnet
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What is topological about the toric code?

It’s got topological invariants




What is topological about the toric code?

* Lattice TQFT

* Macroscopic distance code
* Hard to prepare

* Not a paramagnet

* Topological invariants



What do we use topological order for?

Topological codes — high fault tolerance thresholds
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Operational considerations?



Outline

Part |: Zero-temperature
* Classification strategies
* Existing definitions
* Relations
e Subtleties

Part |I: Non-zero temperature
* Existing definitions
e Separating examples



Part |. Zero temperature

aka pure state
aka closed system



General setup

N> 1 ®
finite-dim spins

N

N

metric




What are we even classifying?

* (Pure) states
* Arbitrary states vs ground states of gapped local Hamiltonians

* Spaces
* Arbitrary spaces vs ground spaces of gapped local Hamiltonians

* (Closed) systems
* Gapped local Hamiltonians



Basic strategies

Direct definition

1) Define topological order
2) Finished

Equivalence relation

1) Define an equivalence relation

2) Define a “topologically trivial”
representative

3) Anything that is not
topologically trivial is topologically
ordered



Definitions



Definitions

e Lattice TQFTs

Pros:

* Well developed theory of TQFT
* Easy to motivate

* Lots of interesting examples

Cons:
* Isn’t an easily checkable criterion

* Very restrictive definition
» excludes e.g. Haah code



Definitions

Direct definition on spaces
* Macroscopic distance code
* Local indistinguishability Local indistinguishability:
* LTQO ~
(l/)lORll/)) ~ const.
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Definitions

* Macroscopic distance code
* Local indistinguishability
* LTQO

Pros:

* Operational interpretation: good
code against local errors

* Physical consequences: with other
conditions, implies perturbative
stability

Cons:

e All 1-dim spaces are locally
indistinguishable (paramagnet)



Definitions

Equivalence relation on states

1Y) ~ )
iff there exists local unitary circuit U
e Hard to prepare Y)Y = Ulp)

 Local unitary circuit equivalence ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

depth = O(1)

|0)Y®N s trivial



Definitions

* Hard to prepare
 Local unitary circuit equivalence

Pros:

* Defines topological order for all
states

* Easy to work with

* Local operators mapped to local
operators, global operators
mapped to global operators

Cons:
* Alittle imprecise



Definitions

* Not a paramagnet
* Gapped path equivalence

Equivalence relation on Hamiltonians

H, ~ H,
iff there exists a uniformly gapped
smooth path H(s) with
H, = H(0)and H, = H(1)

H;
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Definitions

* Not a paramagnet
* Gapped path equivalence

Pros:

* Physically motivated: ground state
energy is analytic if gap stays open

* Implies existence of quasi-adiabatic
continuation between ground
spaces = stability

Cons:

* Only works for gapped
Hamiltonians



Definitions

Direct definition on states

Topological entanglement entropy:
Y =S84+ 58+ 5S¢ =S4 — Spc — Sca + Sanc

-—a

* Topological invariants ‘
* Topological entanglement entropy

e Haah invariants 0




Definitions

* Topological invariants
* Topological entanglement entropy
e Haah invariants

Pros:

* Direct motivation from TQFT
* Simple

* Easily verified

* Can distinguish some phases

Cons
* Not always well-defined
e Can be tricked



Aside: fixing up the TEE

Bravyi counterexample strings give
anomalous contribution to TEE.

If we average over the whole phase, this
should wash out.

But what is a sensible measure over a phase?




Definitions

e Lattice TQFTs

* Macroscopic distance code
* Local indistinguishability
* LTQO
* Hard to prepare
 Local unitary circuit equivalence

* Not a paramagnet
* Gapped path equivalence

* Topological invariants
* Topological entanglement entropy
e Haah invariants



Relations between definitions

e A TQFT has nonzero TEE
A TQFT satisfies LTQO

* TEE, if properly defined, should be invariant under local unitaries and
gapped paths

 ATQFT is local-unitary non-trivial
* ATQFT is gapped-path non-trivial

 Local indistinguishability is preserved under local unitaries and gapped
paths

* Local unitaries and gapped paths, properly defined, should be equivalent
(on ground states of gapped Hamiltonians)



(Idealized) relations between definitions

Topological phase




From gapped paths to local circuits

Definition of Quasi-Adiabatic Continuation

We introduce the unitary operator

~

V(s) (17)
= S'exp {— / ds'/ dTe"(T/t")z/Q['&;ﬁ(z'T) - h.c.]} ,
0 0

where the symbol &’ denotes that the exponential is S’-
ordered, in analogy to the usual time ordered or path
ordered exponentials. We define us = 0. Hs = Ziui,
and define u/ (i7) following Ref. [27]: for any operator
A

A(t) = A(t) exp[—(t/tg)* /2], (18)

- 1 ~ 1
+ . .
A*(ir) = = /th(t)ﬂHT. (19)




From gapped paths to local circuits

* This is basically evolution under a (quasi)-local Hamiltonian
* We can just Trotterize!

... up to errors

... which don’t play nicely



Controlling errors

We can approximate a quasi-adiabatic continuation by breaking it into
strictly local pieces:

|V — (Ve® Vie) - Vareay || < F(d) - |OR|
d

-— 0



Controlling errors

Break up the (2d) lattice into 4 pieces
Recursively split up the QAC

Now everything is local
Error is under control




Aside: an application

* The procedure only uses Lieb-Robinson bounds
* Equally well applies to simulation of local Hamiltonian dynamics
* Previously known in 1D, now in any finite dim Euclidean space



Topology sensitivity

* Should the toric code on the sphere be in the same phase as the toric
code on the torus?

* Equivalence up to local indistinguishability = equivalence of local
patches



Notable generalizations

* Add symmetries to phase classifications
« SPT/SET

* Quasi-topological order



Part Il: Finite temperature

aka mixed state
aka open system



What are we even classifying?

* Mixed states
* Arbitrary states vs thermal states of gapped local Hamiltonians



What should be topologically ordered?

Topologically ordered pure states
Low temperature thermal states of 4D toric code (self-correcting)

Low temperature thermal states of 3D toric code (non-zero TMI)

Thermal states of Haah code
l Thermal states of 2D toric code



Definitions



Definitions

* Not a classical state (Hastings)

p is trivial if a spin K; can be
added at each site i, and a local
unitary circuit U found such that

p = trg(UpqUT)

for some “classical” state:
Pcl X eXp(_,BHcl)



Definitions

* Not a classical state (Hastings)

Pros:
* Tractable criterion
e Often gives “right” answer

* Most of the way to an equivalence
relation

Cons:
* Not so easily motivated
e Tailored to thermal states

* Does it always give “right” answer?



Definitions

e Local purification (Osborne) p is trivial if there exists a local
purification of it that is pure-state
trivial



Definitions

Pros:

e Local purification (Osborne)  Easily connects to pure state
definitions

Cons:
* Difficult to check
* Does it give “right” answers?



Definitions

p is trivial if there exists local CPTP
circuit C such that

p = C(|0)(0|®N)

* Local CPTP circuits equivalence



Definitions

Pros:

* Connects intuitively with pure-

e Local CPTP circuits equivalence state case

* Half-way to an equivalence
relation

Cons:
* Difficult to check
* Does it give “right” answers?



Definitions

p is trivial if it can be written as a
convex combination of

, . topologically trivial pure states
* Not a mixture of trivial states

(Osborne)



Definitions

Pros:

* Connects easily to pure-state
case

* Not a mixture of trivial states * Operationally motivated

(Osborne)
Cons:
 Difficult to check

* Does it give “right” answer?



Definitions

Topological mutual information:
Yy =1Ia+1g+Ic—Isp —Igc — Ica + Iapc

* Topological invariants ’Q

- 0




Definitions

Pros:
* Easy to calculate
* Close to pure-state condition

Cons:
* Topological invariants  Not always well-defined



How can we test these definitions?

* |ITO states
 Critical classical states



Invertible topological order

|Y) is invertibly topologically ordered if it has an “anti-state”

i.e. [Y) is local-unitary topologically ordered
and

3 |p) s.t. [Y) Q |@) is local-unitary trivial



s an ITO state topologically ordered?

v
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Pure state definitions

Not a classical state (Hastings)
Local purification

Local CPTP circuits equivalence
Not a mixture of trivial states
Topological invariants



Classical critical states

e.g. -thermal states of g-clock model at intermediate temperature
- critical thermal states of Ising model

* These states have algebraically decaying correlations
e States with algebraically decaying correlations are difficult to prepare



s a classical critical state topologically ordered?

: efiniti

Not a classical state (Hastings)
Local purification

Local CPTP circuits equivalence
Not a mixture of trivial states

X X <%

Topological invariants



Operational motivations?

Zero temperature TEE

Finite temperature TMI

2D toric code

3D toric code

4D toric code




Operational motivations?

Zero temperature TEE

Finite temperature TMI

2D toric code

2
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3D toric code

4D toric code




Operational motivations?

Zero temperature TEE

Finite temperature TMI

2D toric code 2 0
3D toric code
4D toric code 2 2




Operational motivations?

Zero temperature TEE

Finite temperature TMI

2D toric code 2 0
3D toric code 2 1
4D toric code 2 2




Big questions to leave you with

 What do we want topological order to mean?
* How should we characterise topological phases?
* |s there an operational definition for topological order?



Advertisement: Hopf algebras in guantum double models

Mathematical connections from gauge theory to topological
guantum computation and categorical quantum mechanics

Co-organizers: Lucy Zhang & Prince Osei
July 31 — August 4




