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Testing causal structures
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Interventions
1

Causal relationships can be probed by interventions:

Compare

Pr|[friends | same weight]
Pr([friends | do(same weight)]

Pr[do(friends) | weight].



Passive Causal Inference?

1

However:

» Interventions often impractical / unethical

Natural Question:

Can one obtain information about causal relations from em-
pirical observations?




Causal structures

To address problem, formalize notions:
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Causal structures

To address problem, formalize notions:

c i(} » For n variables Xi,..., Xy,
o

> a causal structure or
L Bayesian network is directed
acyclic graph,

ey
|

» with ith variable function
2L«
3§ Smede Xi = fi(pa;, uj)

. of its parents pa; and “local
L‘ w ' ? t‘ "
randomness” u;.

Chain rule of probability = p(x1,...,x;) = N7_; P(xi|pa;, u;).

In TN language: Contraction of (non-negative) tree tensor network.



Local Markov Condition

’ Causal structure does imply testable conditions

» “wiping” independent of
“cold” conditioned on
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Local Markov Condition

’ Causal structure does imply testable conditions

\/\&\/ C a/\(} Ex.: B |
| » “wiping” independent of
“cold” conditioned on
“sneazing” .

Z

More generally:
Snesge » X; is independent of its

3
non-descendants, given its
. parents.
< e ”
l\‘ wif » “Local Markov Condition" .

Result:

(1) All corollaries of causal structures follow from Local
Markov Conditions.
(2) Recoverable aspects of causality graph well-understood.

[Pearl, 2000]
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... however, analysis breaks down if only subset of variables
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Ex.: “common ancestor” problem:
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» but is not compatible, e.g. with 3 perfectly correlated coins.



Hidden variables (confounders / latent variables)

... however, analysis breaks down if only subset of variables
accessible.

Ex.: “common ancestor” problem:

» Pair-wise structure implies no independences between A, B, C,
» but is not compatible, e.g. with 3 perfectly correlated coins.

» Amazingly, this example not yet fully characterized! (— Later)



Algebraic Statistics

> Independences = algebraic
constraints

p(x,y) = p(x)p(y)
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Algebraic Statistics

v

Independences = algebraic
constraints

p(x,y) = p(x)p(y)
il HINI < rank(p(x,y)) =1

v

Rank variety + Positivity
4 = real algebraic geometry

<A3 Bg>

v

Nasty in theory and pratice. ..

» ...so new ideas needed.

<4, B3>



Diverse Applications. ..
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Bell inequalities for social networks

I’'m happy to unveil a new paper, “A sequence of relaxations constraining hidden
variable models”.

Depending on your interests, 1’'m including two different overviews. One comes from
the social networks perspective and the other from the quantum physics perspective.
etecting hidden variables.



Entropic Marginals



1. Entropy cone
Step 1/3: The unconstrained, global object.

» Associate with S C {1,...,n} the
joint entropy S(Xs)

» = an entropy vector v € R?",
indexed by subsets
Ex.: (H(0), H(A), H(B), H(A, B))




. Entropy cone
Step 1/3: The unconstrained, global object.

» Associate with S C {1,...,n} the
joint entropy S(Xs)

» = an entropy vector v € R?",
indexed by subsets
Ex.: (H(D), H(A), H(B), H(A, B))

> Easy proof: Set of all such entropy
vectors forms convex cone [} (up
to closure).




1. Entropy cone
Step 1/3: The unconstrained, global object.

» Associate with S C {1,...,n} the
joint entropy S(Xs)

» = an entropy vector v € R?",
indexed by subsets
Ex.: (H(D), H(A), H(B), H(A, B))

> Easy proof: Set of all such entropy
vectors forms convex cone [} (up
to closure).

» Structure not fully understood, but. ..

> ...contained in Shannon cone cone I, defined by strong
subadditivity and monotonicity.

H(A,B) < H(A,B,C), H(A,B) < H(A)+H(B), I(B: C|A)>0.
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Step 1/3: The unconstrained, global object.

» Associate with S C {1,...,n} the
joint entropy S(Xs)

» = an entropy vector v € R?",
indexed by subsets
Ex.: (H(D), H(A), H(B), H(A, B))

> Easy proof: Set of all such entropy
vectors forms convex cone [} (up
to closure).

» Structure not fully understood, but. ..

> ...contained in Shannon cone cone I, defined by strong
subadditivity and monotonicity.

H(A,B) < H(A,B,C), H(A,B) < H(A)+H(B), I(B: C|A)>0.

» We will mostly work with Shannon relaxation.



2. Causal constraints
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2. Causal constraints

Step 2/3: Now choose candidate structure and add causal

constraints. '
» That's easy:

J Conditional independences measured by
KNA\/ c ok mutual information:
! 2

I({wipe} : {hay, cold}|{sneeze}) = 0.
» Can even relax:
Smeatt
I({wipe} : {hay, cold}|{sneeze}) < e.

ko wipe

» = cone C of constraints.

= new global cone I',, N C of entropies subject to causal structure.
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Step 3/3: Marginalize.
» Set M C 2{L-n} of jointly observable r.v.'s is marginal
scenario.

» Classically: r.v.’s either observable or not
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3. Marginalize
Step 3/3: Marginalize.

» Set M C 2{L-n} of jointly observable r.v.'s is marginal
scenario.

» Classically: r.v.’s either observable or not
QM: Some r.v.’s not jointly measureable.

Marginalize to M:

» Geometrically trivial:

just restrict [, N C to observable
coordinates.
» Algorithmically costly: T, N C
represented in terms of inequalities
) (use, e.g. Fourier-Motzkin

elimination)

Final result: description of marginal, causal, entropy cone
(I',, N C)jaq in terms of “entropic Bell inequalities”.




1. Relation Entropy & Binary Bell Inegs

Revisit “entropic CHSH" [Braunstein & Caves '88 (1)]
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(XaXg) +(YaXg) +(YaYe) — (XaYg) < (Xa) + (X5)

H(XaXg) — H(YaXg) — H(YaYs) + H(XaYs) > —H(Xa) — H(Xz)

» Measures frustration in degree of correlation, rather than sign.
» Resembles “sign-reversed” CHSH. No coincidence. ..

» Result: Negative of any multipartite entropic ineq also valid
for probabilities. [NJP '13]

» Often, converse true = Source of entropic Bell inegs [NJP '13]
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2. Common Ancestors & Strength of Causal Influence

» Entropic constraints given by (perms of)

B=1(A:B)+I(A: C)— H(A) <O0.

» Ex.: Perfectly correlated coins: B = 1.

» Violation B interpretable as causal strength of direct influence
A — B required to explain data [UAI '14]

P P o )
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r ) 4 LIy |
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Py Y P
\\\B/K )\3 +\\,,C_:/) "\?/*7)\37%\9)

» Def. causal strength C4_.g as relative entropy distance
incurred by cutting link.

> Then Ca_g > B. [UAI '14]



3. Many more. ..
Can treat...
» Scenarios of n observables with independent common
ancestors influencing at most M each

A2 ] 5 1x 2
~ 57 =
B4 3 4 3 @

» Direction of causation from pairwise marginals

D—0 “o—0
W—0 O—

...and more.
[UAI "14]



Entropy & Quantum Causal Stuctures



Quantum Causal Structures 1
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quantum systems.



Quantum Causal Structures 1

» With minor modifications, causal diagrams make sense for
quantum systems.

> Nodes are states. Labels desginate systems.

» If node has incoming edges, state results from CP map
applied to incoming systems.

» Sample diagram says

paBc = [Pa,4,540P8,8,-80Pc | (PA1B,DPA;OPBy C2c )-
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How to build entropic constraints for quantum causal structures:
1. Use von Neumann entropy

= drop monotonicity ineq. H(A, B) > H(A)
2. QM does not assign joint state to input &
output of operation! No "H(Aj, A)"!
Consider only coexisting variables!
3. Use data processing inequality to relate
non-coexisting variables. Ex.:

/(A B) S I(A1A2 . 3132).

... gives rich theory [Nat. Comm. '14].
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S

MY ABIE(y

=) e (5

Recall inf. caus. game: [Pawlowski et al., Nature '09]
> Alices receives bits Xi,...,X,, sends message M to Bob
» Bob recives M and challenge S — outputs guess Y for Xs
> Aided by joint quantum state pag

Original inequality:

D I(Xs 1 YIS =) < H(M)

Strengthening using systematic “quantum causal structures” prot.:

/(Xl : Y, M)+/(X2 1Yo, M)+/(X1 : X2|Y2, M) < H(M)+/(X1 : Xg).
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Quantum Causal Structures Ex.: Information Causality

0.20 —NS
' IC single copy
0.18 —new IC single copy
__ — |C multiple copies
0.16 T N - - Quantum
~ 0.14 '
0.12
0.10
0.08 -

0.80 0.82 0.84 0.86 0.88

€

[ p(ﬂv bl.l,.y) = ?PPR i EPdc.’, s (1 -7 — E)Pwhitc]

Two consequences of strenghtened ineq.:

1. Violation measures “direct causal influence” Cx_y
2. Detects more post-quantum correlations:



LPs & relaxations of causal assumptions in Bell
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Relaxations of causal assumptions in Bell scenarios

(a) Bipartite Bell (b) Rel. of locality (c) Rel. oflocality
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In this part:
» Do not work with entropies.
But show how. ..

> ...graphical notation of causality make it easy to reason
about relaxations of causal assumptions.

> ...the idea of quantifying “causal influence” is fruitful for Bell
scenarios.
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Relaxations of causal assumptions in Bell scenarios

Constraints encoded by Bell causal struc-
ture have names:

9 » Locality
%)

p(blx,y, A) = p(bly, A).

ey
@—4]

» Measurement independence

p(x, ¥, A) = p(x)p(y)p(A).

How much do we need to relax the causal assumptions en-
tering in Bell's theorem to explain “non-local correlations”
classically?




Relaxations

> Ingredient 1: More general causal structures

(a) Bipartite Bell

(b) Rel. of locality

(c) Rel. oflocality
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> Ingredient 2: Quantitative measures of causal strength




Relaxations

> Ingredient 1: More general causal structures

> Ingredient 2: Quantitative measures of causal strength

9 © i

A A B A

B

Meas. Ca_,g used here: Maximal change in total variational
distance incurred by manually changing A:

Carvs = sup > p(N)|p(bldo(2), A) — p(bldo(2), )|
aa Ty
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Main Result

Quantitative minimum of relaxation necessary to classically
explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.
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» Causal interpretation of numerical CHSH violation:

minCa_g = minCx_,g = max{0, CHSH}



Results

Main Result

Quantitative minimum of relaxation necessary to classically
explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.

» Quantitative bound on measurement dependence

min M = max{0, l4/4},

where
M = [lp(A; x,y) = p(A)p(x, y)l Tv

and Iy violation of CGLMP-inequality.



Results

Main Result
Quantitative minimum of relaxation necessary to classically

explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.

» Quantum violations even for classical models that allow for
communication of measurement outcomes!
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Recent Australian experiments

Experimental Test of Nonlocal Causality
M. Ringbauer®2, C. Giarmatzi’?, R. Chaves®*, F. Costa!, A. G. White''? & A. Fedrizzi'>®

L Centre for Engineered Quantum Systems, % Centre for Quantum Computer and Communication Technology,
School of Mathematzcs and Physics, Uniwversity of Queensland, Brisbane, QLD 4072, Australia,
3 Institute for Physics H FDM, University of Freiburg,
79104 Freiburg, Germany, *Institute for Theoretical Physics,
University of Cologne, 50937 Cologne, Germany,
58chool of Engineering and Physical Sciences, SUPA,
Heriot-Watt University, Edinburgh EH14 4AS, UK

[Science Advances '16]
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Recall we can’t even figure out triangle. ..
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.. 10 the singlet state by SLOCC operations 3. In the case of three entangled qubits, it was shown
24,5 that each state can be converted by SLOCC operations either to the GHZ-state (000 111

V&, or to the W-state (001 010 100 )/), leading to two inequivalent ways of entangling ...

Cited by 350 - Related articles - BL Direct - All 12 versions - Import into BibTeX

Control and measurement of three-qubit entangled states

CF Roos, M Riebe, H Haffner, W Hansel . - Science, 2004 - sciencemag org

.. The ions’ electranic qubit states are initialized in the S state by aptical pumping. Three
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Three coins can be correlated in how many
ways?
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SDPs

Recall we can’t even figure out triangle. ..

... new outer approximations based covariances

» Assume all observable

: ‘_N‘ quantities take values in
oo Iy ‘\ o a vector space.
' —oy S . o’ » Q: What can we say
"\ ® 0 about its covariance
’ matrix?

y



SDPs
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» SDP test more powerful than entropic inegs. for triangle.

> ...but true transition point still not known.

A. Kela, K. Prillwitz, J. Aberg, R. Chaves, DG, arXiv:1701.00652.



Summary

» Causal structures and Bell nonlocality go well together

> Field relatively young — pick that fruit!
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David Gross Coogee (yeah!)
University of Cologne Jan 2017



