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The big question

Fault-tolerant overhead

We want to execute a quantum algorithm with N logical gates.
N ∼ 1012-1015 to simulate a small molecule like Fe2S2.

Each gate is error-corrected to accuracy δ, so errors build up to
Nδ if they add coherently (worst case, systematic bias).√

Nδ if they add stochastically.

δ needs to be ∼ 1/
√

N to 1/N to prevent harmful error build up.
10−6 to 10−15 for quantum chemistry (pretty vague).

If the physical noise rate ε is sub threshold, then fault-tolerant
error correction can produce logical gates of accuracy δ with
overhead polylog(1

δ ).

Given a physical noise rate ε, how much error correction do I need to
achieve a logical noise rate δ?
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QEC simulation methods for general noise

Quantum many-body methods

Realistic noise models cannot be efficiently simulated.
Interacting quantum many-body problem.

Our contribution
Study fault-tolerance with realistic noise models using numerical
many-body techniques

Tensor network methods
Density matrix renormalization group (DMRG).
Projected entangled pairs state (PEPS).
Multi-scale entanglement renormalization ansatz (MERA).
etc.
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QEC simulation methods for general noise

What goes into a simulation?

Prepare some known code state |ψ̄〉
Applying some noise E to ρ = |ψ̄〉〈ψ̄|.

When E is some stochastic noise, we can sample the noise instead
of applying E .

Sample the syndrome bits prj(±) = 1
2(1± Tr[E(ρ)Sj ]).

Decode, i.e., find a correction operation C based on the observed
syndrome.
Apply the correction to the post-measurement state ρ′.
Evaluate the logical transformation that has been applied to the
logical state.
Repeat for different input states ψ̄ to perform logical process
tomography.

We actually use Jamilkowski isomorphism instead.
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QEC simulation methods for general noise

What goes into a simulation?

If we can do all of this...

Simulation
INPUT

Noise E .
OUTPUT

A syndrome s.
The probability of that syndrome pr(s).
The logical channel conditioned on that syndrome EL

s .

Given this we can estimate...
Average channel EL =

∑
s pr(s)EL

s

Average logical error
∑

s pr(s)‖EL
s − id‖

Error of logical average ‖EL − id‖
etc.
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QEC simulation methods for general noise

Surface code

The surface code logical basis states |ψ̄〉 = |0̄〉, |1̄〉, |+̄〉, or |−̄〉
are PEPS and are complete for logical process tomography.
ρ = E(|ψ̄〉〈ψ̄|) is a PEPO for any PEPSO CPTP map E .
Computing the probability of a syndrome bit 1

2(1± Tr[ρSj ]) boils
down to contracting a 2D TN.
The post-measurement state ρ′ ∝ (1± Sj)ρ(1± Sj) is also a
PEPO.
Applying a Pauli correction operator to ρ′ preserves the PEPO
structure.
Computing the logical probabilities Tr(ρL) required for process
tomography boils down to contracting a 2D TN.

While efficient, approximate contraction schemes are known, we
choose to contract exactly, so the scaling is exponential with the (least)
linear size of the lattice, e.g. W × L lattice, LeW vs eLW .
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QEC simulation methods for general noise

Concatenated codes

Use brute force simulate a
finite block with physical noise
model E .
Yields a logical channel
conditioned on syndrome EL

s .
Use EL

s as input to finite block
simulation.
Compatible with

Uncorrelated noise.
Tree-like TN noise.
MPS noise.
etc.

U U U
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U

L

U U U

U

U U U
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† † †

† † † † † † † † †
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Problem with metrics

Does this question even make sense?

Given a physical noise rate ε, how much error correction do I need to
achieve a logical noise rate δ?

How do I quantify the physical noise rate?
Infidelity ε = 1−

∫
dψF [ψ, E(ψ)] has a nice statistical interpretation,

measured by randomized benchmarking.
Diamond norm ε = ‖E − I‖� composes well, used in analytical FT
studies.
Hilbert-Schmidt norm ε = ‖E − I‖2 is easy to manipulate.
etc.
These metrics can differ significantly, e.g., ε vs

√
ε.
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Problem with metrics

Better approximation to the diamond norm

‖ · ‖� used for FT analysis and 1− F accessed by randomized
benchmarking differ significantly.

The diamond norm could always be extracted from full process
tomography of the channel.
Can we combine randomized benchmarking results with other
easily accessible quantities to estimate diamond norm?
Yes, e.g., unitarity can provide tighter bounds.

Kueng, Long, Doherty, & Flammia arXiv:1510.05653

A useful norm is one which would enables us to predict the logical
failure rate after error correction.
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Problem with metrics

Predictability illustrated with Steane’s code
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Problem with metrics

Predictability of noise metrics

Conclusion
It is not possible to even very crudely predict the logical failure rate of a
FT scheme given only the noise rate of the physical channel, as
measured by any of the standard error metrics (Infidelity, Diamond
norm, Channel entropy, Error probability, Euclidian norm, Trace norm).

The Diamond norm does not stand out in any way.
Incoherent noise is the worst, the opposite of widespread belief??

This is good news: most numerics done to date should be seen as
worst case scenarios.
This statement is norm-dependent!!
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Difficulty of numerical simulations

How to predict the logical failure rate?

Given a physical noise rate ε, how much error correction do I need to
achieve a logical noise rate δ?

Analytical approach: stochastic adversarial noise model with rate
ε should provide an upper bound.

Pros: Simple, widely applicable.
Cons: very loose bounds.

Numerical approach: Monte Carlo simulation of FT scheme with
depolarizing noise of rate ε.

Pros: More accurate estimates
Cons: Simulate 4096 qubits?!?
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Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Clifford simulations

Stabilizer codes use only Clifford operations
(X ,Y ,Z ,H,S,&CNOT ).
These can be simulated efficiently

For N qubits, need to manipulate 2N × 2N matrices.
If the noise consists of Clifford operations too, the whole process
can be efficiently simulated.

In particular Pauli noise models (e.g. depolarizing).
These are the ’free-fermion’ models of fault-tolerance.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 18 / 34



Difficulty of numerical simulations

Monte Carlo simulations

FOR t=1:M
1 Assume the system is initially in a valid code state.
2 Execute a fault tolerant circuit on this encoded state

Sprinkle noise operations at a rate ε over the circuit.
3 Verify if the logical information has been altered by the noise.

END
Report logical failure rate δ = Number of reported failures/M.

To probe δ ∼ 10−10, need M ∼ 1010.
Limited to unphysical noise models.
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Difficulty of numerical simulations

Low noise rate & non-Pauli noise

Our simulations methods are based on the idea of simulating the full
dynamics E and sampling the syndromes, not the errors, just like in a
real experiment.

Thus, they are not limited to Pauli noise.
When sampling Pauli errors, the correction is either right or wrong.
When sampling syndromes, and simulating E entirely, there is
always some residual logical error.

This is why we are able to report 10−18 logical error rates.

We also used importance sampling methods to decrease
statistical fluctuations:∑

s

pr(s)‖EL
s − id‖ =

∑
s

qs

(pr(s)

qs
‖EL

s − id‖
)

The intrinsic variance of the logical error is very large: outliers are
dominant.
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Channel approximations
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Channel approximations

Twirled approximation

MC simulations are limited to unphysical Pauli noise models.

We need to approximate the physical channel E by a Pauli
channel P.

Ignore the non-Pauli contributions to the channel.

E.g. Rotation Rz(θ) = eiθZ = cos θI + i sin θZ error

ρ→ (cos θI + i sin θZ )ρ(cos θI − i sin θZ )

is approximated by a stochastic Z error (dephazing)

ρ→ cos2θ ρ+ sin2θ ZρZ .

This twirled, or ’tight-binding’ approximation might be much nicer
than the original model.
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Channel approximations

Honest Pauli approximation

MC simulations are limited to unphysical Pauli noise models.

Find Pauli channel P that approximates physical channel E well,
yet don’t outperform it.
This is a simple optimization problem

arg min
P

‖E −P‖� such that ‖E(ρ)−I(ρ)‖1 ≤ ‖P(ρ)−I(ρ)‖1 ∀ρ.

Magasan, Puzzuoli, Granade, & Cory arXiv:1206.5407

Numerical simulations with P are efficient (Clifford).
In principle the idea generalizes to, e.g.

to Clifford noise Janardan, Tomita, Gutierrez & Brown arXiv:1512.06284

to spatio-temporally correlated noise models, with a correlated
Pauli or Clifford noise model.
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Channel approximations

Pauli approximations, surface code threshold

Exact Pauli twirl Honest Pauli
Depolarising (ε) 18.5± 1.5% 18.5± 1.5% 18.5± 1.5%

Damping (γ) 39± 2% 39± 2% 6± 1%

Z-rotation (θ) > 0.40π 0.34π 0.11π

Depolarizing, lattice up to size 9× 9 = 81 qubits.
Amplitude damping, lattice up to size 9× 17 = 153 qubits.
Depolarizing, lattice up to size 11× 11 = 121 qubits.
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Channel approximations

Pauli approximations, surface code overhead
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Channel approximations

Usefulness of Pauli approximations

Conclusions
It is not possible to even very crudely predict the logical failure rate
of a FT scheme from known Pauli approximations.
The twirl approximation gets a good threshold estimate in the
examples we looked at.

For the amplitude damping channel:
the twirled gave a good prediction,
the honest Pauli approximation was grossly overestimating the
logical failure.

For the z-rotation channel:
both approximations are totally off.

It is essential to develop simulation methods adapted to non-Pauli
noise models to get a reliable estimate of the FT threshold.
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Decoding

Pauli approximations for the purpose of decoding

There are two levels of difficulty: decoding and simulating.
Even for Pauli noise, decoding is in general a hard problem, but
there are efficient algorithms for some classes of codes.
For non-Pauli noise, the problem becomes even harder.
For decoding purposes, one could assume one of the Pauli
approximations.

Suboptimal but efficient.

Same comments apply to correlated noise models (either Pauli or
not).

Our simulations methods, combined to efficient (approximate)
contraction schemes of TN provide efficient decoders for a wide variety
of non-Pauli and/or correlated noise models.
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Decoding

Pauli approximations for surface code decoding
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Decoding

Correlated erasures on surface code
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The erasure pattern is given by
spin down configuration of a
classical ferromagnetic Ising model
in a magnetic field favoring spin
ups.

D. Poulin (IQ Sherbrooke) Surprising facts about QEC Coogee 2017 30 / 34



Conclusion

Given a physical noise rate ε, how much error correction do I need to
achieve a logical noise rate δ?

We use methods from quantum many-body physics to address
this question.

Surface code.
Concatenated code.

We have found that:
for a fixed physical noise rate, as measured by any standard metric,
the logical failure rate can fluctuate by several orders of magnitude.
the diamond norm is no better than other norms in that regard.
the logical failure rate of Pauli approximations can differ by several
orders of magnitude.
for a given diamond norm physical error rate, incoherent noise is
the worst.
the twirled approximation can give a reasonable threshold estimate.

Also developed an efficient decoder for non-Pauli and correlated
noise on surface code.
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Conclusion

Given a physical noise rate ε, how much error correction do I need to
achieve a logical noise rate δ?

Given an experimentally motivated noise model have the tools to
predict its FT performances.
These predictions can guide experimentalists:

If I changed this parameter, would it have a noticeable effect?

What features of a noise model are critical to FT QEC?

We are using machine learning techniques, combined to our
simulations, to find these parameters.

Do these features have an intuitive meaning?
Can these features be measured efficiently experimentally?
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Conclusion

Institue Quantique @ Sherbrooke

Newly founded institute to conduct research at the frontier of quantum
information and quantum materials, and to go from quantum science to
quantum technologies.
We are looking for talented

Graduate students
Postdocs
Visiting faculty/scientists

Talk to me if you have any interest.
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