Wigner function negativity and contextuality in quantum computation

1

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Nicolas Delfosse Caltech & UCR

joint work with J. Bermejo-Vega, D. Browne, C. Okay, R. Raussendorf

Coogee - Jan 31, 2017

Motivation

- Understanding what distinguishes quantum mechanics from classical mechanics.
- ▶ Why? We must exploit these properties to obtain a quantum superiority for certain tasks.

In this work:

- ► Contextuality (from foundation)
- ▶ Negativity of the Wigner function (from quantum optics)

Outline

- Quopit Wigner functions
 - Negativity is a resource
 - ▶ Contextuality is a resource
 - ► Equivalence

- Generalization to qubits
 - ▶ Negativity is NOT a ressource
 - ▶ Contextuality is a resource
 - ► Comparison between negativity and contextuality

Classical simulation with quopit Wigner functions

Theorem ¹: We can simulate classically any Clifford circuit in polynomial time.

 1 Gotesman (1998)

Theorem ¹: We can simulate classically any Clifford circuit in polynomial time.

 1 Gotesman (1998)

Definition of discrete Wigner functions

For $(A_{\mathbf{u}})_{\mathbf{u}\in\mathbf{V}}$ a basis of the space of matrices acting on $(\mathbb{C}^d)^{\otimes n}$.

$$\rho = \sum_{\mathbf{u} \in V} \alpha_{\mathbf{u}} A_{\mathbf{u}}$$

Definition: The Wigner function of ρ associated with the basis $(A_{\mathbf{u}})$ is defined by

$$W_{\rho}(\mathbf{u}) = \alpha_{\mathbf{u}}.$$

What is a good basis in that context?

Definition of discrete Wigner functions

What is a good basis in that context?

• Inner product over $(m \times m)$ -matrices

$$(A|B) = (1/m)\operatorname{Tr}(AB^{\dagger}).$$

• If the basis $(A_{\mathbf{u}})$ is orthonormal, then

$$W_{\rho}(\mathbf{u}) = (1/m) \operatorname{Tr}(A_u \rho).$$

▶ Simple description of stabilizer states.

Natural choice: The Pauli basis.

Wigner function associated with Pauli basis

Wigner function associated with Pauli basis

A better basis

Let
$$\mathbf{u} = (\mathbf{u}_Z, \mathbf{u}_X)$$
 and $\omega = e^{2i\pi/p}$.

Two basis:

▶ (1) Heisenberg-Weyl basis:

$$T_{\mathbf{u}} = \omega^{-\frac{(\mathbf{u}_Z | \mathbf{u}_X)}{2}} Z^{\mathbf{u}_Z} X^{\mathbf{u}_X}$$

▶ (2) Its Fourier transform (the 'good' choice):

$$A_{\mathbf{u}} = d^{-n} \sum_{\mathbf{v} \in \mathbb{Z}_d^{2n}} \omega^{[\mathbf{u}, \mathbf{v}]} T_{\mathbf{v}}$$

Why is (2) good?

- ▶ Theorem²: $W_{|\psi\rangle\langle\psi|} \ge 0$ iff $|\psi\rangle\langle\psi|$ is a stabilizer state.
- Probabilistic interpretation

²Gross. J. Math. Phys. 2006

A better basis

For n qubits

 $W_{\rho}: \mathbb{Z}_2^n \times \mathbb{Z}_2^n \longrightarrow \mathbb{R}$

• Wigner function of $\rho = Fix(XX, -ZZ)$:

$$W_{\rho} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- $W_{\rho} \ge 0 \Rightarrow$ probability distribution.
- Interpretation: ρ is in position u with proba $W_{\rho}(u)$.

Wigner function of a measurement

If
$$(E_m)$$
 is measured and $\rho = \sum_u W_{\rho}(u)A_u$ then

$$\mathbb{P}(m) = \operatorname{Tr}(E_m \rho) = \sum_u W_{\rho}(u)\operatorname{Tr}(E_m A_u).$$

▶ Definition: The Wigner function of E_m is

$$W_{E_m}(u) := \operatorname{Tr}(E_m A_{\mathbf{u}}).$$

▶ Interpretation:

$$\mathbb{P}(m) = \sum_{\mathbf{u}} W_{E_m}(\mathbf{u}) W_{\rho}(\mathbf{u}) \approx \sum_{\mathbf{u}} \mathbb{P}(m|\mathbf{u}) \mathbb{P}(\mathbf{u})$$

Example of classical simulation

• input:

$$\begin{bmatrix} 1/4 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 1/4 \end{bmatrix}$$

• gate $XI = Z^{(00)}X^{10} =$ translation of (00|10):

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• gate HH = permute X and Z:

$$\begin{bmatrix} 0 & 1/4 & 1/4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1/4 & 1/4 & 0 \end{bmatrix}$$

e gate $CZ =$
 $ab|cd) \rightarrow (a+b,b|c,c+d)$
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1/4 & 1/4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/4 & 1/4 \end{bmatrix}$$

Extention of Gottesman-Knill theorem

The classical simulation algorithm:

Input: $\rho = \bigotimes_{i=1}^{n} \rho_i$ with $W_{\rho_i} \ge 0$.

Output: Output distribution of the circuit.

- **1.** Pick u with proba $W_{\rho}(\mathbf{u})$
- **2.** Update ${\bf u}$ after Clifford gates
- **3.** Return *m* with proba $W_{E_m}(\mathbf{u})$ when the state is \mathbf{u}
- 4. Repeat
 - Key ingredients: $W_{\rho} \ge 0$ and $W_{E_m} \ge 0$.
 - ▶ Can simulate mixed states.
 - ▶ Can simulate non-stabilizer states.

Theorem³: Clifford circuits with inputs $\rho = \bigotimes_{i=1}^{n} \rho_i$ such that $W_{\rho_i} \ge 0$ are efficiently classically simulable.

 $^{^{3}\}mbox{Veitch},$ Ferrie, Gross, Emerson - NJP 2012

Theorem⁴: $W_{\rho} \ge 0$ iff ρ is non-contextual for stabilizer measurements.

- ▶ Technical and non explicit proof.
- ▶ For one quopit only. For odd prime dimension only.

⁴Howard, Wallman, Veitch, Emerson - Nature 2014

Equivalence between negativity and contextuality

Hidden variable model

Problem: Can we explain classically the randomness in quantum measurements?

Idea: Extend the description of the quantum state ρ :

• State: ρ is a probabilistic mixture

 $\rho = u$ with proba $\mathbb{P}(u)$

where u is the state of the hidden variable model.

- Measurement: In position u, every observable A has a fixed value $\lambda_u(A)$.
- ▶ **Prediction:** Reproduces quantum mechanics

$$\langle A \rangle_{\rho} = \sum_{u} \mathbb{P}(u) \lambda_u(A)$$

Flatlant

Can we properly define a pre-existing value $\lambda_u(A)$ for every observable A?

► Non-contextuality:

$$[A,B] = 0 \Rightarrow \lambda_u(A)\lambda_u(B) = \lambda_u(AB).$$

Value assignments

$$\lambda_{\nu}: T_u \longmapsto \lambda_{\nu}(T_u) \in \mathbb{C}$$

$$[u,v] = 0 \quad \Rightarrow \quad \lambda_{\nu}(T_u T_v) = \lambda_{\nu}(T_u)\lambda_{\nu}(T_v)$$

▶ Character means

$$\lambda_{\nu}(T_u T_v) = \lambda_{\nu}(T_u)\lambda_{\nu}(T_v)$$

Value assignments

$$\lambda_{\nu}: T_u \longmapsto \lambda_{\nu}(T_u) \in \mathbb{C}$$

$$[u,v] = 0 \quad \Rightarrow \quad \lambda_{\nu}(T_u T_v) = \lambda_{\nu}(T_u)\lambda_{\nu}(T_v)$$

▶ Character means

$$\lambda_{\nu}(T_u T_v) = \lambda_{\nu}(T_u)\lambda_{\nu}(T_v)$$

Lemma: If d is odd and $n \ge 2$, then value assignments on $(\mathbb{C}^d)^{\otimes n}$ are characters.

Elementary proof of the equivalence

Let us prove that if ρ has a NCHVM then $W_{\rho} \ge 0$.

$$\begin{split} W_{\rho}(u) &= d^{-n} \operatorname{Tr}(A_{u}\rho) & \text{def. of } W_{\rho} \\ &= d^{-2n} \sum_{v \in V} \omega^{[u,v]} \operatorname{Tr}(T_{v}\rho) & \text{linearity of } \operatorname{Tr} \\ &= d^{-2n} \sum_{v \in V} \omega^{[u,v]} \sum_{\nu \in S} \lambda_{\nu}(T_{v}) q_{\rho}(\nu) & \text{def. of the } \operatorname{HVM} \\ &= d^{-2n} \sum_{\nu \in S} \left(\sum_{v \in V} \omega^{[u,v]} \lambda_{\nu}(T_{v}) \right) q_{\rho}(\nu) & \text{permute the sums} \end{split}$$

Since $\omega^{[u,\cdot]}\lambda_{\nu}$ is a character $\sum_{v\in V}\omega^{[u,v]}\lambda_{\nu}(T_v)$ is either 0 or d^{2n} . This proves that

 $W_{\rho}(u) \ge 0$

If (S,q_ρ,λ) is a NCHVM for ρ then there exists an bijective map $\sigma:S\to V$ such that

$$q_{\rho}(\nu) = W_{\rho}(\sigma(\nu))$$

for all $\nu \in S$.

The Wigner function is the only NCHVM

- Recover Howard et al.
- Extention to any odd dimension
- Extention to multiple qudits
- ▶ Description of all NCHVM

Quopit summary

To have a quantum speed-up with quopits:

- Negativity is required
- Contextuality is required
- ▶ They are equivalent (difficult to prove)

Problems with qubits:

- For ≥ 2 qubits, every state is contextual
- ▶ No Hudson theorem
- ▶ No Clifford covariance

Qubits Wigner functions

The problem with qubits

- ▶ There is no good choice of Wigner function for *n*-qubits
- ▶ For a single qubit, there is a NCHVM
- ▶ For more than 2 qubits, every state is contextual

$$\begin{array}{ccc} a & b \\ X \otimes I & I \otimes X \\ c & d \\ I \otimes Z & Z \otimes I \end{array}$$

a	b	ab
$X \otimes I$	$I\otimes X$	$X \otimes X$
c	d	cd
$I\otimes Z$	$Z\otimes I$	$Z\otimes Z$

$\stackrel{a}{X\otimes I}$	b $I\otimes X$	ab $X \otimes X$
c $I\otimes Z$	$d Z \otimes I$	$\begin{array}{c} cd \ Z\otimes Z \end{array}$
$ac X \otimes Z$	$bd \ Z \otimes X$	

$a X \otimes I$	b $I\otimes X$	$ab \\ X \otimes X$
c $I\otimes Z$	$d Z \otimes I$	$cd \ Z\otimes Z$
$ac X \otimes Z$	$bd \ Z \otimes X$	$Y \otimes Y$

Assume that we can define the values

$a \\ X \otimes I$	b $I\otimes X$	ab $X \otimes X$
c $I\otimes Z$	$d Z \otimes I$	$cd\ Z\otimes Z$
$ac X \otimes Z$	$bd \ Z \otimes X$	$Y \otimes Y$

This implies $\lambda_u(Y \otimes Y) = abcd = -abcd$.

- Every state ρ is contextual!
- Contextuality cannot be a resource

The problem with qubits

By analogy with quopits, we must pick a phase $\varphi(\mathbf{u})$ for

$$T_u = \varphi(\mathbf{u}) Z^{\mathbf{u}_Z} X^{\mathbf{u}_X}$$

For quopits $\varphi(\mathbf{u}) = \omega^{-\frac{(\mathbf{u}_Z | \mathbf{u}_X)}{2}}$ But:

- We cannot divide by 2.
- ► For quopits: $T_u T_v = T_{u+v}$ when they commute. This is impossible for qubits.
- ▶ No Hudson's theorem.
- ▶ No Clifford covariance

Qubit Wigner functions

Pick a phase for each Pauli:

$$T_{\mathbf{u}}^{\gamma} = i^{\gamma(u)} Z^{\mathbf{u}_Z} X^{\mathbf{u}_X},$$

where $\gamma: V \to \mathbb{Z}_4$.

► Then define $W^{\gamma}_{\rho}(u) = \frac{1}{2^n} \operatorname{Tr}(A_u \rho)$ where

$$A_{\mathbf{u}} = \frac{1}{2^n} \sum_{\mathbf{v} \in V} (-1)^{[\mathbf{u}, \mathbf{v}]} T_{\mathbf{v}}^{\gamma}$$

The rebit example

Pick $\gamma(u) = 0$ for all u. Then

$$T_{\mathbf{u}} = Z^{\mathbf{u}_Z} X^{\mathbf{u}_X} \qquad A_{\mathbf{u}} = \frac{1}{2^n} \sum_{(\mathbf{v}_Z | \mathbf{v}_X) = 0} (-1)^{[\mathbf{u}, \mathbf{v}]} T_{\mathbf{v}}$$

and $W_{\rho}(\mathbf{u}) = \frac{1}{2^n} \operatorname{Tr}(A_{\mathbf{u}}\rho).$

- ▶ Hudson: $W_{|\psi\rangle\langle\psi|} \ge 0$ iff it is a real stabilizer states (CSS).
- Gates preserving real states \leftrightarrow linear maps.
- ▶ Real measurements preserve non-negativity.
- ▶ No Peres-Mermin square.

Theorem⁵: Negativity of this Wigner function is required for a quantum speed-up with rebits (real states).

⁵Delfosse, Allard, Bian, Raussendorf - Phys. Rev. X 2015

Quantum computing scheme associated with γ

Pick γ and define W^{γ} . The corresponding scheme is based on

- Input states $= |\psi\rangle$ such that $W^{\gamma}_{|\psi\rangle\langle\psi|} \ge 0$
- ► Measurements = Pauli measurements that do not introduce negativity in W^{γ}
- Gates = preserve the set of measurements
- ▶ Inject magic states for universality

Theorem⁶: Negativity of magic states for W^{γ} is required for a quantum speed-up.

 $^{^6 {\}rm Raussendorf},$ Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506

Classical simulation from NCHVM

New approach: Directly use the HVM for classical simulation.

Given a NCHVM for all γ -measurements for a state ρ . The NCHVM can be updated

- \blacktriangleright after a $\gamma\text{-gate}$
- \blacktriangleright after a $\gamma\text{-measurement}$

Theorem⁷: Contextuality for γ -measurements is required for a quantum speed-up and for universality.

Assumption: The HVM can be sampled from efficienty.

 $^{^7\}mathrm{Raussendorf},$ Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506

Measurement update

After measurement of $T_a \in \mathcal{O}$ update the NCHVM by:

$$S' = S \cup (S+a),$$

$$\lambda_{\nu+a}(T_v) = \lambda_{\nu}(T_v)(-1)^{[a,v]}$$

$$q_{\rho'}(\nu) = \frac{\delta_{\lambda\nu(T_a),(-1)^s}}{\mathbb{P}(s)} \cdot \frac{q_{\rho}(\nu) + q_{\rho}(\nu+a)}{2}.$$

Inspired by Wigner functions update:

$$W_{\rho'}(u) = \frac{\delta_{(-1)^{[u,a]},(-1)^s}}{\mathbb{P}(s)} \cdot \frac{W_{\rho}(u) + W_{\rho}(u+a)}{2}$$

- ▶ We can simulate gates that introduce negativity.
- ▶ The negativity can be large but of a particular form.
- ▶ Comparison with Pashayan, Wallman, Bartlett?

Contextuality for qubits

Theorem⁸: ρ has a NCHVM iff $\rho = \sum_i p_i \rho_i$ such that ρ_i has a non-negative Wigner function $W_{\rho_i}^{\gamma_i} \ge 0$.

 $^{^8 {\}rm Raussendorf},$ Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506

Conclusion

Overall

▶ Quopits are simple, the qubit case is still partially open!

Next step:

- ▶ Prove that negativity is sufficient for quopits.
- ▶ Classify our QC schemes.
- Other models of computation.
- ▶ Continous variable.