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2Motivation

I Understanding what distinguishes quantum mechanics from
classical mechanics.

I Why? We must exploit these properties to obtain a
quantum superiority for certain tasks.

In this work:
I Contextuality (from foundation)
I Negativity of the Wigner function (from quantum optics)



3Outline

• Quopit Wigner functions
I Negativity is a resource
I Contextuality is a resource
I Equivalence

• Generalization to qubits
I Negativity is NOT a ressource
I Contextuality is a resource
I Comparison between negativity and contextuality
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Classical simulation with quopit
Wigner functions



5Simulation of Clifford gates
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Theorem 1: We can simulate classicaly any Clifford
circuit in polynomial time.

1Gotesman (1998)
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6Definition of discrete Wigner functions

For (Au)u∈V a basis of the space of matrices acting on (Cd)⊗n.

ρ =
∑
u∈V

αuAu

Definition: The Wigner function of ρ associated with
the basis (Au) is defined by

Wρ(u) = αu.

What is a good basis in that context?



7Definition of discrete Wigner functions

What is a good basis in that context?

I Inner product over (m×m)-matrices

(A|B) = (1/m) Tr(AB†).

I If the basis (Au) is orthonormal, then

Wρ(u) = (1/m) Tr(Auρ).

I Simple description of stabilizer states.

Natural choice: The Pauli basis.



8Wigner function associated with Pauli basis

"Pauli Wigner function" of the stabilizer state
ρ = Fix(XX,−ZZ)
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9Wigner function associated with Pauli basis

"Pauli Wigner function" of the stabilizer state
ρ = Fix(XX,−ZZ)
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10A better basis

Let u = (uZ ,uX) and ω = e2iπ/p.

Two basis:
I (1) Heisenberg-Weyl basis:

Tu = ω−
(uZ |uX )

2 ZuZXuX

I (2) Its Fourier transform (the ’good’ choice):

Au = d−n
∑

v∈Z2n
d

ω[u,v]Tv

Why is (2) good?
I Theorem2: W|ψ〉〈ψ| ≥ 0 iff |ψ〉〈ψ| is a stabilizer state.
I Probabilistic interpretation

2Gross. J. Math. Phys. 2006



11A better basis

For n qubits
Wρ : Zn2 × Zn2 −→ R

I Wigner function of ρ = Fix(XX,−ZZ):

Wρ =


0 0 0 0
1/4 0 0 1/4
1/4 0 0 1/4
0 0 0 0


I Wρ ≥ 0 ⇒ probability distribution.
I Interpretation: ρ is in position u with proba Wρ(u).



12Wigner function of a measurement

If (Em) is measured and ρ =
∑

uWρ(u)Au then

P(m) = Tr(Emρ) =
∑
u

Wρ(u) Tr(EmAu).

I Definition: The Wigner function of Em is

WEm(u) := Tr(EmAu).

I Interpretation:

P(m) =
∑
u

WEm(u)Wρ(u) ≈
∑
u

P(m|u)P(u)



13Example of classical simulation
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Z

X

• input:
1/4 0 0 1/4
0 0 0 0
0 0 0 0
1/4 0 0 1/4


• gate XI = Z(00)X10 =
translation of (00|10):

0 0 0 0
1/4 0 0 1/4
1/4 0 0 1/4
0 0 0 0



• gate HH = permute X and Z:
0 1/4 1/4 0
0 0 0 0
0 0 0 0
0 1/4 1/4 0


• gate CZ =
(ab|cd)→ (a+ b, b|c, c+ d)

0 0 0 0
0 0 1/4 1/4
0 0 0 0
0 0 1/4 1/4





14Extention of Gottesman-Knill theorem

The classical simulation algorithm:
Input: ρ = ⊗ni=1ρi with Wρi ≥ 0.
Output: Output distribution of the circuit.
1. Pick u with proba Wρ(u)
2. Update u after Clifford gates
3. Return m with proba WEm(u) when the state is u
4. Repeat

I Key ingredients: Wρ ≥ 0 and WEm ≥ 0.
I Can simulate mixed states.
I Can simulate non-stabilizer states.



15Extention of Gottesman-Knill theorem

Theorem3: Clifford circuits with inputs ρ = ⊗ni=1ρi such
that Wρi ≥ 0 are efficiently classically simulable.

3Veitch, Ferrie, Gross, Emerson - NJP 2012



16Equivalence with contextuality

Theorem4: Wρ ≥ 0 iff ρ is non-contextual for stabilizer
measurements.

I Technical and non explicit proof.
I For one quopit only. For odd prime dimension only.

4Howard, Wallman, Veitch, Emerson - Nature 2014
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Equivalence between negativity and
contextuality



18Hidden variable model

Problem: Can we explain classicaly the randomness in quantum
measurements?

Idea: Extend the description of the quantum state ρ:
I State: ρ is a probabilistic mixture

ρ = u with proba P(u)

where u is the state of the hidden variable model.
I Measurement: In position u, every observable A has a

fixed value λu(A).
I Prediction: Reproduces quantum mechanics

< A >ρ=
∑
u

P(u)λu(A)



19Flatlant



20Flatlant



21Contextuality

Can we properly define a pre-existing value λu(A) for every
observable A?

I Non-contextuality:

[A,B] = 0⇒ λu(A)λu(B) = λu(AB).



22Value assignments

λν : Tu 7−→ λν(Tu) ∈ C

I Non-contextuality means

[u, v] = 0 ⇒ λν(TuTv) = λν(Tu)λν(Tv)

I Character means

λν(TuTv) = λν(Tu)λν(Tv)

Lemma: If d is odd and n ≥ 2, then value assignments on
(Cd)⊗n are characters.
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23Elementary proof of the equivalence

Let us prove that if ρ has a NCHVM then Wρ ≥ 0.

Wρ(u) = d−nTr(Auρ) def. of Wρ

= d−2n
∑
v∈V

ω[u,v]Tr(Tvρ) linearity of Tr

= d−2n
∑
v∈V

ω[u,v]
∑
ν∈S

λν(Tv)qρ(ν) def. of the HVM

= d−2n
∑
ν∈S

(∑
v∈V

ω[u,v]λν(Tv)

)
qρ(ν) permute the sums

Since ω[u,·]λν is a character
∑

v∈V ω
[u,v]λν(Tv) is either 0 or d2n.

This proves that
Wρ(u) ≥ 0



24The Wigner function is the only NCHVM

If (S, qρ, λ) is a NCHVM for ρ then there exists an bijective map
σ : S → V such that

qρ(ν) =Wρ(σ(ν))

for all ν ∈ S.



25The Wigner function is the only NCHVM

I Recover Howard et al.
I Extention to any odd dimension
I Extention to multiple qudits
I Description of all NCHVM



26Quopit summary

To have a quantum speed-up with quopits:
I Negativity is required
I Contextuality is required
I They are equivalent (difficult to prove)

Problems with qubits:
I For ≥ 2 qubits, every state is contextual
I No Hudson theorem
I No Clifford covariance
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Qubits Wigner functions



28The problem with qubits

I There is no good choice of Wigner function for n-qubits
I For a single qubit, there is a NCHVM
I For more than 2 qubits, every state is contextual

rx
ry

rz

(1,1,1)

(-1,-1,-1)
(1,1,-1)

(-1,-1,1)
(-1,1,1)

W

W
BS



29Mermin square

Assume that we can define the values

a b

ab

X ⊗ I I ⊗X

X ⊗X

c d

cd

I ⊗ Z Z ⊗ I

Z ⊗ Z

ac bd
X ⊗ Z Z ⊗X Y ⊗ Y

This implies λu(Y ⊗ Y ) = abcd = −abcd.
I Every state ρ is contextual!
I Contextuality cannot be a resource
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30The problem with qubits

By analogy with quopits, we must pick a phase ϕ(u) for

Tu = ϕ(u)ZuZXuX .

For quopits
ϕ(u) = ω−

(uZ |uX )

2 But:
I We cannot divide by 2.
I For quopits: TuTv = Tu+v when they commute. This is

impossible for qubits.
I No Hudson’s theorem.
I No Clifford covariance



31Qubit Wigner functions

I Pick a phase for each Pauli:

T γu = iγ(u)ZuZXuX ,

where γ : V → Z4.

I Then define W γ
ρ (u) =

1
2n Tr(Auρ) where

Au =
1

2n

∑
v∈V

(−1)[u,v]T γv



32The rebit example

Pick γ(u) = 0 for all u. Then

Tu = ZuZXuX Au =
1

2n

∑
(vZ |vX)=0

(−1)[u,v]Tv

and Wρ(u) =
1
2n Tr(Auρ).

I Hudson: W|ψ〉〈ψ| ≥ 0 iff it is a real stabilizer states (CSS).
I Gates preserving real states ↔ linear maps.
I Real measurements preserve non-negativity.
I No Peres-Mermin square.

Theorem5: Negativity of this Wigner function is
required for a quantum speed-up with rebits (real
states).

5Delfosse, Allard, Bian, Raussendorf - Phys. Rev. X 2015



33Quantum computing scheme associated with γ

Pick γ and define W γ . The corresponding scheme is based on
I Input states = |ψ〉 such that W γ

|ψ〉〈ψ| ≥ 0

I Measurements = Pauli measurements that do not introduce
negativity in W γ

I Gates = preserve the set of measurements
I Inject magic states for universality

Theorem6: Negativity of magic states for W γ is required
for a quantum speed-up.

6Raussendorf, Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506



34Classical simulation from NCHVM

New approach: Directly use the HVM for classical simulation.

Given a NCHVM for all γ-measurements for a state ρ.
The NCHVM can be updated

I after a γ-gate
I after a γ-measurement

Theorem7: Contextuality for γ-measurements is
required for a quantum speed-up and for universality.

Assumption: The HVM can be sampled from efficienty.

7Raussendorf, Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506



35Measurement update

After measurement of Ta ∈ O update the NCHVM by:
I S′ = S ∪ (S + a),
I λν+a(Tv) = λν(Tv)(−1)[a,v]

I qρ′(ν) =
δλν (Ta),(−1)s

P(s) · qρ(ν)+qρ(ν+a)2 .

Inspired by Wigner functions update:

Wρ′(u) =
δ(−1)[u,a],(−1)s

P(s)
· Wρ(u) +Wρ(u+ a)

2



36Neagtivity is not a resource

I We can simulate gates that introduce negativity.
I The negativity can be large but of a particular form.
I Comparison with Pashayan, Wallman, Bartlett?



37Contextuality for qubits

rx
ry
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Theorem8: ρ has a NCHVM iff ρ =
∑

i piρi such that ρi
has a non-negative Wigner function W γi

ρi ≥ 0.

8Raussendorf, Browne, Delfosse, Okay, Bermejo-Vega - arxiv:1511.08506



38Conclusion

Overall
I Quopits are simple, the qubit case is still partially open!

Next step:
I Prove that negativity is sufficient for quopits.
I Classify our QC schemes.
I Other models of computation.
I Continous variable.
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