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Abstract:  Quantum computation is a gauge theory.  As-built quantum 
information processors (QIPs) are described by “gate sets” that associate a 
quantum process matrix to each logic gate that can appear in a quantum 
circuit.  But these descriptions are not unique.  For any given QIP, there is 
an infinite set of equivalent gatesets that look quite different, but are 
experimentally indistinguishable.  This is surprisingly inconvenient for 
characterizing QIPs — i.e., for tomography, randomized benchmarking, 
and any other attempt to infer properties of the gateset from experimental 
data.  I will present what is known about the gauge freedom, survey the 
problems that it presents, and issue a challenge to the audience to slay this 
dragon by developing a gauge-free theory of QIPs
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What gauge are we talking about?
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What gauge are we talking about?

prepare

apply'gates

measure

outcome

{⇢, E, {Gi}}
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What is a gauge?
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What is a gauge?

Totally Identical 
Observable Physics

First  
Description

Second 
Description≠
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What is a gauge transformation?
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What is a gauge transformation?

A mathematical mapping 
that turns one description 
of a system into another 
(equivalent) description of 
the same system. 

They typically form a group.
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What does this gauge act on?

9



What does this gauge act on?

Gatesets that describe a black-box QIP.
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How does it act?
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How does it act?

E! G1 G3G2 G1 G2 G1

Pr(E) = hhE|G1G2 . . . G1 |⇢ii

Note:  Every experiment on a QIP looks like this:

hhE0| = hhE|T

|⇢0ii = T�1 |⇢ii

G0
k = T�1GkT

Let T be an

invertible

trace-preserving

superoperator

(not necessarily CP)
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Is that all the gauge 
transformations?

(i.e., are two gatesets not thus related necessarily distinguishable?)
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Is that all the gauge 
transformations?

Yes, except possibly on a set of measure zero. 
Tomography can reveal the entire gateset 
up to similarity transformations of that kind.

(i.e., are two gatesets not thus related necessarily distinguishable?)
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Does this gauge apply to individual 
gates (process matrices)?
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Does this gauge apply to individual 
gates (process matrices)?

No!  It’s a property of the whole gate set. 

Gates have individual & relational properties.
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Does every process matrix 
transform that way?
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Does every process matrix 
transform that way?

No, only ones representing gates. 

Counterexample:  “error processes”

⇤i ⌘ Gi �
⇣
G(ideal)

i

⌘�1
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What is the gauge group?
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What is the gauge group?

Good question.  I think it’s basically 
GL(d2), but not a faithful representation…
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Is it really a group?
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Is it really a group?

Yes, if you ignore complete positivity. 

If you only allow gauge transformations  
that preserve positivity, then it’s restricted
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Do gauge transformations preserve 
[complete] positivity?
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Do gauge transformations preserve 
[complete] positivity?

No. 
 - There’s a unitary subgroup that always does. 
 - If gateset is extremal, then only that subgroup does. 
 - If all the gates have full-rank Choi matrices  
   (e.g. some depolarizing noise), then any sufficiently 
   small gauge transformation preserves CP.
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Do gauge transformations preserve 
distances between things?
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Do gauge transformations preserve 
distances between things?

Yes — for some metrics (2-norm, for example). 

No — for most QI metrics (diamond norm, fidelity) 

No for distances to ideal reference gates!…  
…except Yes for fidelity with the identity operation.
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Can’t I just consider  
unitary gauge transformations?
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Can’t I just consider  
unitary gauge transformations?

Well, yeah.  But it will mislead you. 

Example:  I give you two noisy gatesets related 
by a non-unitary gauge transformation.   
Do you see that they are the same?
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Is complete positivity meaningful in 
a black box context?

29



Is complete positivity meaningful in 
a black box context?

???

prepare

apply'gates

measure

outcome
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Can I tell whether two gatesets are 
gauge-equivalent?
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Can I tell whether two gatesets are 
gauge-equivalent?

Yes.  There are efficient algorithms for this. 
 - simulate linear GST 
 - or reduce both gatesets to a canonical form.
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Can I tell whether two gatesets are 
close to gauge-equivalent?
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Can I tell whether two gatesets are 
close to gauge-equivalent?

Probably, but we don’t really know what the 
right definition of “close” is.  So… no, not now.
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Can I tell whether a gateset is 
[gauge-equivalent to] CP?
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Can I tell whether a gateset is 
[gauge-equivalent to] CP?

We don’t even know how hard this is. 

Best guess is that it’s NP-hard. 

See also “Completely Positive Realization Problem”
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What things are gauge-invariant?
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What things are gauge-invariant?
• Eigenvalues of each gate Gi 

• Inner products between: 
(1) {left eigenvectors of any Gi + effects E}.  
(2) {right eigenvectors of any Gi + state 𝜌}. 

Decay rates, rotation angles, fidelity w/𝟙, SPAM… 
…but not cooling (T1), gate fidelities, rotation axes,…
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What’s the gauge-invariant version of: 
 - Process fidelity?  
 - State fidelity?  
 - Diamond norm distance?
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What’s the gauge-invariant version of: 
 - Process fidelity?  
 - State fidelity?  
 - Diamond norm distance?

???
In all cases, it depends on between what. 
Gate properties are often relative to other gates.
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What properties are gauge-variant? 
(i.e., not gauge-invariant)
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What properties are gauge-variant? 
(i.e., not gauge-invariant)

• Almost anything you want to know, probably. 

• Generally, anything that compares a particular gate to 
an external reference frame is highly gauge-variant. 

• Example:  the “error maps” that appear in RB. 

• Most properties of individual gates.
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How much do they vary with gauge?
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How much do they vary with gauge?
• Some properties vary a lot.  Examples: 

- Elements of process matrices 
- Amount of non-unitality (amplitude-damping) 

• Others can be pretty stable under normal conditions: 
- Distances between gates in the same gateset 
- Decoherence rates.
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What consequences does gauge have 
for forward (prediction) problems?
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What consequences does gauge have 
for forward (prediction) problems?

• None, if you stick to predicting circuit probabilities: 
 

• Significant, if you try to extrapolate results from 
popular properties of gates that aren’t gauge-invariant: 
- Randomized benchmarking <==> fidelity 
- Worst-case error <==> diamond norm

Pr(E) = hhE|G1G2 . . . G1 |⇢ii

G

T�1GT

S�1GS

Q�1GQ

W�1GW

prepare

apply'gates

measure

outcome
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What consequences does gauge have 
for backward (inference) problems?
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What consequences does gauge have 
for backward (inference) problems?

G

T�1GT

S�1GS

Q�1GQ

W�1GW

prepare

apply'gates

measure

outcome

?

Pretty severe
• None, as long as you: 

1.  Only infer/estimate gauge-invariant quantities, OR 
2.  Make sure to use your estimates correctly. 

• In practice, today, everybody wants to infer/estimate/
use non-gauge-invariant quantities.
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Do I care about this? 
Why should I care about this?
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Do I care about this? 
Why should I care about this?

Only if you have some connection to 
experimental quantum information processing. 

Or care about deep and tricky problems 
in mathematical/foundational physics.

“Historically, the search for logically consistent and computationally 
tractable gauge fixing procedures, and efforts to demonstrate their 
equivalence in the face of a bewildering variety of technical 
difficulties, has been a major driver of mathematical physics from 
the late nineteenth century to the present.”

- https://en.wikipedia.org/wiki/Gauge_fixing
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What are some particularly nasty 
examples where gauge crops up?
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What are some particularly nasty 
examples where gauge crops up?

Unitary changes of gauge can 
increase average gate infidelity 
(related to RB) a whole lot. 

Detuning on a single qubit, with  
X𝝅/2 and Y𝝅/2 gates only, is [almost] 
undetectable by any method… 
       …because the “noise” is [almost] 
equal to a gauge transformation. 

Qubit gates with T1 decay to |0> are 
gauge-equivalent to gates with unital 
noise … unless you look carefully at 
the SPAM operations.  

A qubit with X𝝅/2 and Y𝝅/2 gates… 
except their rotation axes are not 
orthogonal.   
Which gate is 
erroneous? 
How much error  
does each of the 
two gates have?

X
Y
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Stop doing gauge transformations!  
They’re annoying.
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Stop doing gauge transformations!  
They’re annoying.

It wasn’t my idea.  Really. 

A gauge “transformation” is just a handy way of 
describing a fact:   
 * Different gatesets produce identical physics. *
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Why don’t you just pick a gauge 
and stick with it?
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Why don’t you just pick a gauge 
and stick with it?

Because “choosing a gauge” — like Coulomb or Lorenz — 
actually means “define a gauge-fixing procedure”.  And we 
don’t have any satisfactory general procedures yet. 

(There’s no well-defined notion of “What gauge is this gate-set in?”)
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I’m okay as long as I only measure 
gauge-invariant things, right?
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I’m okay as long as I only measure 
gauge-invariant things, right?

Only gauge-invariant things can be measured!   
Gauge-variant quantities aren’t real/observable/measurable. 

You’re okay as long as you only ever think about gauge-
invariant things.  Good luck with that.
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If I probe two parts of a QIP, do I 
have to glue the gauges together?
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If I probe two parts of a QIP, do I 
have to glue the gauges together?

Yes.  Probably.  We aren’t totally sure what this means yet.
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What can I learn about the gateset 
describing a QIP?
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What can I learn about the gateset 
describing a QIP?

1)  All the gauge-invariant properties. 
2)  The entire gateset, up to gauge transformations. 
3)  Everything needed to predict all possible circuits. 

(Sorry if that’s not the answer you were looking for…)
62



Gauge is just a GST thing, right?
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Gauge is just a GST thing, right?

No.
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This doesn’t matter for 
 randomized benchmarking, right?
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This doesn’t matter for 
 randomized benchmarking, right?

Yes, it does. 

RB is an experiment — what it measures is gauge-invariant. 

But we don’t know what that is, theoretically.  It’s not any 
popular “fidelity” because they aren’t gauge-invariant.
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This doesn’t matter for fault 
tolerant QEC, right?

67



This doesn’t matter for fault 
tolerant QEC, right?

It matters if you want to understand how observables (like 
logical failure rates) depend on features of the noise model. 

==> we (probably) need to make sure the “error metrics” 
we use to describe as-built qubits are gauge-invariant.
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Does interleaved RB work?
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Does interleaved RB work?

Not always.
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What if I just do state tomography?  
Does gauge show up there?
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What if I just do state tomography?  
Does gauge show up there?

State tomography estimates 𝝆 relative to a fixed reference 
frame defined by X, Y, Z (or their counterparts). 

It assumes that you can measure in these bases. 

If you test/prove that assumption, you get gauge. 
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Supplementary Figure 4 | Calibrated vs uncalibrated state tomography: a,
Data taken to calibrate the tomography shows ripples in the length of the Bloch
vector if we assume that the tomography projects the quantum state on to
Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different
evolutions that are used for tomography calibration. If the tomography is
assumed to project on to the Cartesian axes there are points that lay outside
the Bloch sphere, and the pure |Si states are not at the north pole, which is
indicative of flawed state tomography. d, The ripples in the length of the bloch
vector are diminished (compared to panel a) if the axes deduced from state
tomography (inset) are used. e-f, The paths around the Bloch sphere for the
different evolutions that are used for state tomography. When the correct axes
are used, all the points lie inside the Bloch sphere and the pure |Si are at the
north pole.

many different evolutions around the Bloch sphere by evolving
from many different starting points at many values of ≤ (Suppl.
Fig. 4b,c,e,f). We determine the axes on to which we project
our state by finding the axes that minimize the amplitude of
the ripples in the length of the Bloch vectors (Suppl. Fig. 4d).
Based on our measurement procedure, we define the S-T 0 axis
to lie along the z-axis. We allow the y-axis to lie anywhere
on the Bloch sphere because a rotation around the x-axis can
suffer from over/under rotation as well as adiabaticity issues
with switching J on and off instantly. We constrain the x-axis
to lie in the x-z-plane because the only expected error is due
to adiabaticity turning J on and off. The typical tomographic
axes are shown in Suppl. Fig. 4d, and the signs of the errors are
consistent with their origins. The variation from calibration to
calibration is ª1% on the axis lengths and angles.
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Supplementary Figure 5 | Single-qubit rotations: a, The Pauli set for ø=100ns
as measured is complicated by single qubit rotations. b, Numerically rotating
each qubit around the S-T0-axis simplifies presentation and analysis. c, The
expected state for ø=100ns. d, The single qubit rotation angles for both qubits
as a function of ø are smooth and monotonic functions. e-f The entire Pauli set
as a function of ø for the raw and rotated data equation(1). The the y-axes of
adjacent elements in the Pauli set are offset by 1.

Determining Single Qubit Rotations
During the entangling sequence the two qubits rotate very

rapidly around the S-T0 axis compared to the speed of the
CPHASE gate (J1/2º ª J2/2º ª 300M H z, J12/2º ª 1M H z). These
single qubit rotations are not perfectly canceled out by the º-
pulses in the dynamically decoupled sequence due to pulse
distortions, consistent with pulse rise time effects at short times
and capacitive coupling to RC-filtered DC gates at long times.
Moreover, the angles by which the qubits are rotated change
as a function of the evolution time ø. In order to undo these
rotations, we perform a least-square fit of the data to the ex-
pected form of the Pauli set (see equation(1) below), restricting
the rotation to be around the S-T0 axis because J1, J2 ¿ ¢Bz .
These angles are shown in Fig. 3b, and exhibit a smooth,
monotonic behavior. The angles increase quickly for small ø,
which is consistent with pulse rise time effects, and display
linear behavior for long ø, which is consistent with long time RC
filtering. For comparison, we plot the entire Pauli set for both
the rotated and unrotated data in Suppl. Fig. 5 c-d.

3

M.D.	Shulman	et	al,	Science	336,	202-205	(2012)
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Why not just do process tomography, 
and get the whole process matrix?
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Why not just do process tomography, 
and get the whole process matrix?

Same problem as state tomography:  you’re eliminating the 
gauge by making an assumption that’s not generally true.
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Is the gauge relevant to maximum 
likelihood estimation (MLE)?
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Is the gauge relevant to maximum 
likelihood estimation (MLE)?

Yes.  MLE over gatesets is possible, but: 

1. The likelihood is flat along gauge orbits — and not quasi convex.  
This presents problems for quite a few optimization algorithms. 

2. Imposing CP is a complete nightmare, because the CP constraint 
totally doesn’t play nice with gauge orbits.
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Does the gauge affect uncertainty 
quantification (error bars)?
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Does the gauge affect uncertainty 
quantification (error bars)?

Yes.  It’s a huge pain in the neck: 

1. Technically, the fact that you can’t “know” the gauge means your 
error bars are infinite on every gauge-variant quantity. 

2. So, in practice, we fix the gauge => we “know” gauge parameters. 
3. We have to fix the gauge very carefully to avoid “polluting” one 

parameter’s error bars with another parameter’s uncertainty.

QuVDe 2016

Gauge-fixing #1 Gauge-fixing #2

 
 

AM error bars (large) with gate error bars (small). 

SPAM

gate

Figure 3.7: Top: The space of gatesets can be conceptualized as a fiber bundle, in which each

fiber is an orbit of the gauge group, and all gatesets on a given fiber are gauge-equivalent.

Gauge-fixing procedures correspond to slices (not necessarily flat ones) through the bundle,

with the property that exactly one element of each fiber is included. Bottom: GST measures

gate parameters to much higher accuracy than SPAM parameters, because gates can be re-

peated many times to amplify small deviations (but SPAM cannot). Thus, any choice of gauge-

fixing that mixes gate and SPAM parameters even a little bit (as shown here) can spuriously

increase gate parameter error bars by an order of magnitude, just by mixing a small amount of

the (much larger) SPAM error bars into them.

assign zero error bars to them.

This latter approach is the correct one, but it is severely complicated by the fact

that we have no gauge-invariant parameterization of gatesets. . . which means that we

have no general way to separate the gauge from the real parameters. This means that

we have to deal with them more or less on the fly while constructing error bars. Our

approach is to first identify a point estimate, then construct the local tangent space to

the gauge group, and identify it with the gauge parameters. The “real” parameters on

which we wish to define an error ellipsoid are orthogonal to this space. In constructing

the error ellipsoid, we project it onto this space of real parameters, so that it vanishes

in every direction that moves along the local gauge (tangent) space.

This doesn’t quite fully solve the problem. Although the local gauge (tangent)
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Figure 3.8: Error bars are critically sensitive to the gauge-fixing procedure used. We fix the

gauge by “gauge optimization”, which means numerically varying over all possible gauge

choices to minimize the [Frobenius-norm] discrepancy between the estimate and the target

gates. This function is the sum of (a) the discrepancy in the SPAM operations and (b) the dis-

crepancy in the gates, and gauge transformations mix the SPAM and gate parameters. This

figure shows the effect (on the size of the bootstrap error bars for the gate and SPAM pa-

rameters, respectively) of varying the relative weighting of SPAM and gate discrepancy in the

discrepancy that is minimized. When “SPAM weight” is almost zero, the SPAM estimate fluctu-

ates hugely – but when it is 1, the gate estimates fluctuate too much. The plateau of relatively

constant behavior for SPAM weight in the range [2×10−3, 5×10−2] indicates a range of suitable

SPAM weight.

space is well-defined, there turn out to be many different ways to define its orthogonal

complement. Orthogonality is only defined relative to a metric (e.g., a metric tensor),

and it’s not obvious what the “correct” metric to use on gateset space is. Whatever

metric is chosen will define a [different] notion of orthogonality, and a different space

of “real” parameters in which the error ellipsoid will be defined.

The choice of metric corresponds precisely to a choice of gauge-fixing procedures. A

gauge-fixing procedure is a consistent rule for collapsing all gauge-equivalent gatesets

to a single representative element. There is no privileged choice of which element to

use as a representative for each equivalence class, but each consistent rule for doing

so defines a metric on the “real” parameters, and thus gauge-fixing procedures are

equivalent to metrics.

We found that the precise nature of the gauge-fixing procedure that we chose had

a surprisingly large impact on the final error bars. This stems from the fact that uncer-

tainties on SPAM parameters (the elements of ρ and E) are orders of magnitude larger

than uncertainties on gate parameters. The different gauge-fixing parameters can be

visualized by imagining a bundle of spaghetti, each of which is a gauge manifold (Fig.

3.7, top). Any slice through the bundle defines a unique representative element for

137

78



You guys know how to fix the gauge 
when you do GST, right?
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You guys know how to fix the gauge 
when you do GST, right?

No.  We just do it anyway. 

Any gauge-fixing assigns “error” to each individual gate.  
But we know that sometimes the error is purely relational! 

And “minimize error” usually conflicts with “be CP”.
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Figure 3.8: Error bars are critically sensitive to the gauge-fixing procedure used. We fix the

gauge by “gauge optimization”, which means numerically varying over all possible gauge

choices to minimize the [Frobenius-norm] discrepancy between the estimate and the target

gates. This function is the sum of (a) the discrepancy in the SPAM operations and (b) the dis-

crepancy in the gates, and gauge transformations mix the SPAM and gate parameters. This

figure shows the effect (on the size of the bootstrap error bars for the gate and SPAM pa-

rameters, respectively) of varying the relative weighting of SPAM and gate discrepancy in the

discrepancy that is minimized. When “SPAM weight” is almost zero, the SPAM estimate fluctu-

ates hugely – but when it is 1, the gate estimates fluctuate too much. The plateau of relatively

constant behavior for SPAM weight in the range [2×10−3, 5×10−2] indicates a range of suitable

SPAM weight.

space is well-defined, there turn out to be many different ways to define its orthogonal

complement. Orthogonality is only defined relative to a metric (e.g., a metric tensor),

and it’s not obvious what the “correct” metric to use on gateset space is. Whatever

metric is chosen will define a [different] notion of orthogonality, and a different space

of “real” parameters in which the error ellipsoid will be defined.

The choice of metric corresponds precisely to a choice of gauge-fixing procedures. A

gauge-fixing procedure is a consistent rule for collapsing all gauge-equivalent gatesets

to a single representative element. There is no privileged choice of which element to

use as a representative for each equivalence class, but each consistent rule for doing

so defines a metric on the “real” parameters, and thus gauge-fixing procedures are

equivalent to metrics.

We found that the precise nature of the gauge-fixing procedure that we chose had

a surprisingly large impact on the final error bars. This stems from the fact that uncer-

tainties on SPAM parameters (the elements of ρ and E) are orders of magnitude larger

than uncertainties on gate parameters. The different gauge-fixing parameters can be

visualized by imagining a bundle of spaghetti, each of which is a gauge manifold (Fig.

3.7, top). Any slice through the bundle defines a unique representative element for
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How does one fix the gauge?   
What is a gauge-fixing procedure?
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How does one fix the gauge?   
What is a gauge-fixing procedure?

QuVDe 2016

Gauge-fixing #1 Gauge-fixing #2

 
 

AM error bars (large) with gate error bars (small). 

SPAM

gate

Figure 3.7: Top: The space of gatesets can be conceptualized as a fiber bundle, in which each

fiber is an orbit of the gauge group, and all gatesets on a given fiber are gauge-equivalent.

Gauge-fixing procedures correspond to slices (not necessarily flat ones) through the bundle,

with the property that exactly one element of each fiber is included. Bottom: GST measures

gate parameters to much higher accuracy than SPAM parameters, because gates can be re-

peated many times to amplify small deviations (but SPAM cannot). Thus, any choice of gauge-

fixing that mixes gate and SPAM parameters even a little bit (as shown here) can spuriously

increase gate parameter error bars by an order of magnitude, just by mixing a small amount of

the (much larger) SPAM error bars into them.

assign zero error bars to them.

This latter approach is the correct one, but it is severely complicated by the fact

that we have no gauge-invariant parameterization of gatesets. . . which means that we

have no general way to separate the gauge from the real parameters. This means that

we have to deal with them more or less on the fly while constructing error bars. Our

approach is to first identify a point estimate, then construct the local tangent space to

the gauge group, and identify it with the gauge parameters. The “real” parameters on

which we wish to define an error ellipsoid are orthogonal to this space. In constructing

the error ellipsoid, we project it onto this space of real parameters, so that it vanishes

in every direction that moves along the local gauge (tangent) space.

This doesn’t quite fully solve the problem. Although the local gauge (tangent)
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Gauge transformations partition gateset space into gauge 
orbits.  A gauge-fixing procedure maps each orbit to a single 
“representative” point on that orbit. 

Gauge-fixing procedures can be explicit (“enforce this condition”), 
implicit (“minimize this quantity”) or algorithmic (“run this procedure”).
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Do you like fiber bundles?
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Do you like fiber bundles?

No.  Not really.  But gauge freedom turns the space of 
possible gatesets into one. 

At least I think so. 

I don’t actually know what a fiber bundle is.

QuVDe 2016

Gauge-fixing #1 Gauge-fixing #2

 
 

AM error bars (large) with gate error bars (small). 

SPAM

gate

Figure 3.7: Top: The space of gatesets can be conceptualized as a fiber bundle, in which each

fiber is an orbit of the gauge group, and all gatesets on a given fiber are gauge-equivalent.

Gauge-fixing procedures correspond to slices (not necessarily flat ones) through the bundle,

with the property that exactly one element of each fiber is included. Bottom: GST measures

gate parameters to much higher accuracy than SPAM parameters, because gates can be re-

peated many times to amplify small deviations (but SPAM cannot). Thus, any choice of gauge-

fixing that mixes gate and SPAM parameters even a little bit (as shown here) can spuriously

increase gate parameter error bars by an order of magnitude, just by mixing a small amount of

the (much larger) SPAM error bars into them.

assign zero error bars to them.

This latter approach is the correct one, but it is severely complicated by the fact

that we have no gauge-invariant parameterization of gatesets. . . which means that we

have no general way to separate the gauge from the real parameters. This means that

we have to deal with them more or less on the fly while constructing error bars. Our

approach is to first identify a point estimate, then construct the local tangent space to

the gauge group, and identify it with the gauge parameters. The “real” parameters on

which we wish to define an error ellipsoid are orthogonal to this space. In constructing

the error ellipsoid, we project it onto this space of real parameters, so that it vanishes

in every direction that moves along the local gauge (tangent) space.

This doesn’t quite fully solve the problem. Although the local gauge (tangent)
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I’m bored.  I want something to do!
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I’m bored.  I want something to do!

Great!  Here are some outstanding problems: 
1. Invent a useful, elegant gauge-free theory of QIPs. 

3. Find gauge-invariant analogues of fidelity, diamond norm, etc. 
4. Figure out whether a gateset is gauge-equivalent to a CP gateset. 
5. Find a gauge-fixing procedure that ensures CP whenever possible. 
6. Establish gauge-aware theories for your favorite QCVV protocols.
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