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Outline

Introduction: 4-designs
Justification: 4th moments do matter:

e randomized benchmarking
o distinguishing quantum states
e state tomography via compressed sensing

Technical part: 4th moments of Clifford orbits

Implications:

e distinguishing quantum states
o state tomography via compressed sensing
e entropic uncertainty relations
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Spherical t-designs

@ Many results in quantum info rely on
randomized constructions/analysis
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Spherical t-designs

@ Many results in quantum info rely on
randomized constructions/analysis

@ Haar-random states/measurements obey
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Spherical t-designs

@ Many results in quantum info rely on
randomized constructions/analysis

@ Haar-random states/measurements obey
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Definition 1 (Spherical designs)
A t-design {¢,-}?’Z1 C CH obeys Eq. (1) up to k = t.
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Spherical t-designs: examples

E [(J9i)ti)®*] o< Pgypmi
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Spherical t-designs: examples
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Spherical t-designs: examples

E [([9i)ti)*] o Py

ONBs form 1-designs

SICs, MUBs, Clifford orbits form 2-designs

RiIK@QUSYD 2015: multi-qubit Clifford orbits form 3-designs
RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

NO!!! t = 4 is really special

RiK, Gross, Zhu, Grassl| Spherical design properties of Clifford orbits



Randomized benchmarking

@ 2-design property of Clifford group essential for twirling
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Randomized benchmarking

@ 2-design property of Clifford group essential for twirling
= error channel reduces to depolarizing channel
@ 4th moments allow to control variance

= better concentration
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Randomized benchmarking

@ 2-design property of Clifford group essential for twirling
= error channel reduces to depolarizing channel

@ 4th moments allow to control variance
= better concentration

= substantial improvement in sequence length, cf. Joel's talk,
Stephanie’'s talk
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Distinguishing quantum states

o Task: distinguish two pure quantum states with a single measurement
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Distinguishing quantum states

o Task: distinguish two pure quantum states with a single measurement

@ Helstrom's theorem:

1 1
Pr [success] < 5t ZH¢ — [l

RiK, Gross, Zhu, Grassl| Spherical design properties of Clifford orbits



Distinguishing quantum states

o Task: distinguish two pure quantum states with a single measurement

@ Helstrom's theorem:

1 1
Pr [success] < 5t ZH¢ — [l

e Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a
POVM M:
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Distinguishing quantum states

o Task: distinguish two pure quantum states with a single measurement
@ Helstrom’s theorem:
1 1
Pr [success] < 5+ ZH@b -1

e Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a
POVM M:

1 1
Pr [success] < 5+ Z||M(¢ —P)lle,
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Distinguishing quantum states

o Task: distinguish two pure quantum states with a single measurement
@ Helstrom’s theorem:

1 1
Pr [success] < 5t ZH¢ — [l

e Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a
POVM M:

1 1
Pr [success] < 5+ Z||M(¢ —P)lle,

e 2-design measurements are really bad: || Moap(¢ — )¢ = |l — |1
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Distinguishing quantum states

Task: distinguish two pure quantum states with a single measurement
Helstrom’s theorem:

1 1
Pr [success] < 5t ZH¢ — [l

Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a
POVM M:

1 1
Pr [success] < 5+ Z||M(¢ —P)lle,

2-design measurements are really bad: | Map(¢ —)[le = Lll¢ — |1

4-design measurements are optimal: ||Mup (¢ — ¢)|ly = ||¢ — Y[
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Distinguishing quantum states

N
i=1

o Myp = {&v;}
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Distinguishing quantum states

N
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Distinguishing quantum states

N
i=1

o Myp = {&v;}
o [M(¢—¥)le = &SN [(Wild — vln)| = dE[|S]]
e E[S]=0
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Distinguishing quantum states

° Myp = {%@bi};\lzl
o [M(¢ =)l = 5 Sy [(Wild — vlvi)| = dE[|S]]
e E[S]=0
@ use anti-concentration:
E[s?)3
BOS) 2 |/ 3oy
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Distinguishing quantum states

° Myp = {%@bi};\lzl
o [|M(6 —¥)lley = 54 Sy (il — Ylebi)| = dE[|S]]
e E[S]=0
@ use anti-concentration:
E[S2]?
BOS) 2 |/ 3oy

o 4-design property allows for computing E [S?] ,E [S*]
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State tomography/compressed sensing

@ Task: recover rank-r states p of d-level systems (r < d)
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State tomography/compressed sensing

@ Task: recover rank-r states p of d-level systems (r < d)

o Construct a POVM A that contains N > rd log(d) random elements
of a 4-design
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State tomography/compressed sensing

@ Task: recover rank-r states p of d-level systems (r < d)

o Construct a POVM A that contains N > rd log(d) random elements
of a 4-design

@ w.h.p any rank-r p can be recovered from frequencies f = A(p) via
solving (RiK, Rauhut, Terstiege)

mu}grélzeHA(Z) — flle,
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State tomography/compressed sensing

@ Task: recover rank-r states p of d-level systems (r < d)

o Construct a POVM A that contains N > rd log(d) random elements
of a 4-design

@ w.h.p any rank-r p can be recovered from frequencies f = A(p) via
solving (RiK, Rauhut, Terstiege)

mn}grélzeH.A(Z) — flle,

@ Anti-concentration again crucial
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4th moments of Clifford orbits

@ 4-designs often yield essentially optimal results

RiK, Gross, Zhu, Grassl Spherical design properties of Clifford orbits



4th moments of Clifford orbits

@ 4-designs often yield essentially optimal results

e No concrete/nice examples of 4-designs

RiK, Gross, Zhu, Grassl Spherical design properties of Clifford orbits



4th moments of Clifford orbits

@ 4-designs often yield essentially optimal results
e No concrete/nice examples of 4-designs
e multi-qubit Clifford orbits (d = 2"):

(v}, = {Cl¢): CeCld)}

RiK, Gross, Zhu, Grassl| Spherical design properties of Clifford orbits
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4th moments of Clifford orbits

4-designs often yield essentially optimal results

No concrete/nice examples of 4-designs
multi-qubit Clifford orbits (d = 2"):

(v}, = {Cl¢): CeCld)}

|¢) = |0)®" = stabilizer states
these orbits form 3-designs (Zhu, Webb, RiK, Gross)
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4th moments of Clifford orbits

4-designs often yield essentially optimal results

No concrete/nice examples of 4-designs
multi-qubit Clifford orbits (d = 2"):

(v}, = {Cl¢): CeCld)}

|¢) = |0)®" = stabilizer states
these orbits form 3-designs (Zhu, Webb, RiK, Gross)

Promote them by understanding 4th moments
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Technical part
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Rep. theory of the Clifford group

e Task: find invariant subspaces under C — C®*
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Rep. theory of the Clifford group

e Task: find invariant subspaces under C — C®*

@ key insight: i* = (~1)*=(-i)*=1"=1
= [P®*, Q®*] =0 for all Pauli's P, Q € P(d) (Pauli matrices)
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Rep. theory of the Clifford group

e Task: find invariant subspaces under C — C®*

@ key insight: i* = (~1)*=(-i)*=1"=1
= [P®*, Q®*] =0 for all Pauli's P, Q € P(d) (Pauli matrices)
= {P®: P cP(d)} defines stabilizer code

e V is invariant under C®*

@ this is the only additional invariant
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Main technical result

Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

o All irreps of the 4th tensor power of the Clifford group are obtained
by intersecting an irrep of U(d) with V, or V.

@ the stabilizer group of V' is given by the 4th tensor power of all Pauli
matrices.
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Main technical result

Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

o All irreps of the 4th tensor power of the Clifford group are obtained
by intersecting an irrep of U(d) with V, or V.

@ the stabilizer group of V' is given by the 4th tensor power of all Pauli
matrices.

o Corollary: Every Clifford orbit {¢;}1, = {C|¢) : C € Cl(d)} obeys

E[(l0)0)®] = a1(@)Pr +a2(6)Ps 1+ Py = Py
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Main technical result

Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

o All irreps of the 4th tensor power of the Clifford group are obtained
by intersecting an irrep of U(d) with V, or V.

@ the stabilizer group of V' is given by the 4th tensor power of all Pauli
matrices.

o Corollary: Every Clifford orbit {¢;}1, = {C|¢) : C € Cl(d)} obeys

E[(l0)0)®] = a1(@)Pr +a2(6)Ps 1+ Py = Py

= choosing ¢ € C? such that a;(¢) = aa(¢) results in 4-designs
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Applications

Randomized benchmarking, cf. Joel4Stephanie
Distinguishing quantum states

state tomography/compressed sensing

entropic uncertainty relations
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Distinguishing pure quantum states
1 1
Prsuccess] < 5 + 2 [|M(¢ — d)lle = 5 + —H¢ ¥l

o [Mua(v) = @)lley = l1v — ¢l (optimal)
o [[Maa(t) — @)lle, = Sl — 8|11 (bad)
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Distinguishing pure quantum states

Prlsuceess] < 2+ M@ — 9)ll < 3 + £16— vl
o IMualv = Dl = 1 = 8ls (optima)

o [[Maa(t) — @)lle, = Sl — 8|11 (bad)

Theorem 3 (RiK, Zhu, Gross 2016)
Set d = 2" and let M be any Clifford orbit (e.g. stabilizer states). Then

IM(¢ = D)oy = Nl¢ = lln Vb, ¢ pure.

This result becomes worse for highly mixed states.
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State tomography/compressed sensing

Task: recover rank-r states of d-level systems (r < d)
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State tomography/compressed sensing

Task: recover rank-r states of d-level systems (r < d)

Theorem 4 (RiK, Zhu, Gross 2016)

Fixd =2", r <d Let A be a POVM that contains N = r3dlog(d)
random elements of a Clifford orbit. Then w.h.p. any rank-r p can be
recovered from frequencies f = A(p) via solving

el | A(Z) — fle,-

This reconstruction is stable under noise corruption and relaxation of the
rank-r constraint.
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State tomography/compressed sensing

Task: recover rank-r states of d-level systems (r < d)

Theorem 4 (RiK, Zhu, Gross 2016)

Fixd =2", r <d Let A be a POVM that contains N = r3dlog(d)
random elements of a Clifford orbit. Then w.h.p. any rank-r p can be
recovered from frequencies f = A(p) via solving

el | A(Z) — fle,-

This reconstruction is stable under noise corruption and relaxation of the
rank-r constraint.

@ For pure states (r = 1) the associated sample complexity is optimal
up to log-factors.
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Entropic uncertainty relations

@ A maximal set of MUBs obeys

1 d+1
- > _
o ;H(Bklp) > logy(d +1) — 1

RiK, Gross, Zhu, Grassl Spherical design properties of Clifford orbits



Entropic uncertainty relations

@ A maximal set of MUBs obeys

1 d+1
- > _
o ;H(Bklp) > logy(d +1) — 1

@ Derivation only uses 2-design property
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Entropic uncertainty relations

@ A maximal set of MUBs obeys

1 d+1
- > _
d+1kZ_:IH(Bk|p)_ logy(d +1) — 1

@ Derivation only uses 2-design property

o Wehner, Winter: exploit higher moments?

RiK, Gross, Zhu, Grassl| Spherical design properties of Clifford orbits



Entropic uncertainty relations

@ A maximal set of MUBs obeys

1 d+1
- > _
d+1kz_1H(Bk|P)_ logy(d +1) — 1

@ Derivation only uses 2-design property
o Wehner, Winter: exploit higher moments?
o Stabilizer states also form ONBs + "kind of” 4-designs
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Entropic uncertainty relations for stabilizer states

@ Ansatz:

Z (Bilp) 2 ——logz( [(Wilpldi) ™)) a=14¢
k:
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Entropic uncertainty relations for stabilizer states

@ Ansatz:

Z (Bilp) 2 ——logz( [(Wilpldi) ™)) a=14¢
k:

o (Yy|plk) is a r.v. on [0,1]
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Entropic uncertainty relations for stabilizer states

@ Ansatz:

Z (Bxlp) >——|og2( [(Wilpldi) ™)) a=14¢
k:

o (Yy|plk) is a r.v. on [0,1]
= replace (Yk|p|vk) by solution of

1
maximize / (x)xtdx
w[0,1]=[0,1]  Jo
1
subject to / ,u(x)xk =c¢ k=1,2,3,4
0

1
/O H(x)dx = 1, p(x) >0
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Entropic uncertainty relations for stabilizer states

@ Ansatz:

Z (Bxlp) >——|og2( [(Wilpldi) ™)) a=14¢
k:

o (Yy|plk) is a r.v. on [0,1]
= replace (Yk|p|vk) by solution of

1
maximize / (x)xtdx
£:[0,1]—[0,1] 0

1
subject to / ,u(x)xk =c¢ k=1,2,3,4
0

1
/O H(x)dx = 1, p(x) >0

o discretize [0, 1] to obtain a LP



Entropic uncertainty relations for stabilizer states
Theorem 5 (RiK, Zhu, Gross 2016)

For d = 2", stabilizer bases {By}}_, obey

M
1 .
o kg_l H (Bk|p) > logy(d) — c(d) d||_>moo c(d) ~0.854 < 1.

2-design
3-design
stab

4-design |

<S>-log(2")
1

L L L L
12 14 16 18 20
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Summary

@ We have characterized the 4th moments of Clifford orbits in d = 2"

@ The t = 4-case really matters!

@ Applications include

randomized benchmarking

e quantum state discrimination

o state tomography (compressed sensing)
e entropic uncertainty relations
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