# Multi-qubit Clifford orbits fail gracefully to be spherical 4-design

Richard Kueng, David Gross, Huangjun Zhu, Markus Grassl

University of Cologne & MPL Erlangen

arXiv:1609.08172 arXiv:1609.08595 arXiv:1610.08070

see also: Jonas Helsen, Joel Wallman, Stephanie Wehner arXiv:1609.08188

### Outline

- Introduction: 4-designs
- Justification: 4th moments do matter:
  - randomized benchmarking
  - distinguishing quantum states
  - state tomography via compressed sensing
- Technical part: 4th moments of Clifford orbits
- Implications:
  - distinguishing quantum states
  - state tomography via compressed sensing
  - entropic uncertainty relations

# Spherical *t*-designs

• Many results in quantum info rely on randomized constructions/analysis

• Haar-random states/measurements obey

 $\mathbb{E}\left[ (|\psi
angle\!\langle\psi|)^{\otimes k} 
ight] \propto P_{\mathrm{Sym}^k} \quad k\in\mathbb{N}$ 

Definition 1 (Spherical designs)

A  $t ext{-design} \left\{\psi_i
ight\}_{i=1}^N \subset \mathbb{C}^d$  obeys Eq. (1) up to k=t.



# Spherical *t*-designs

- Many results in quantum info rely on randomized constructions/analysis
- Haar-random states/measurements obey

$$\mathbb{E}\left[(|\psi\rangle\langle\psi|)^{\otimes k}
ight] \propto P_{\mathrm{Sym}^k} \quad k \in \mathbb{N}$$
 (1)

Definition 1 (Spherical designs)

A *t*-design  $\{\psi_i\}_{i=1}^N \subset \mathbb{C}^d$  obeys Eq. (1) up to k = t.



# Spherical *t*-designs

- Many results in quantum info rely on randomized constructions/analysis
- Haar-random states/measurements obey

$$\mathbb{E}\left[\left(\ket{\psi}\!\!\bra{\psi}
ight)^{\otimes k}
ight]\propto \mathcal{P}_{\mathrm{Sym}^{k}}\quad k\in\mathbb{N}$$
 (

Definition 1 (Spherical designs)

A *t*-design  $\{\psi_i\}_{i=1}^N \subset \mathbb{C}^d$  obeys Eq. (1) up to k = t.



1)

# $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

# $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$

#### • ONBs form 1-designs

- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

 $\mathbb{E}\left[\left(|\psi_i\rangle\!\langle\psi_i|\right)^{\otimes t}\right] \propto P_{\mathrm{Sym}^k}$ 

- ONBs form 1-designs
- SICs, MUBs, Clifford orbits form 2-designs
- RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs
- RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs
- RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs
- RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

**NO!!!** 
$$t = 4$$
 is really special

#### • 2-design property of Clifford group essential for twirling

- $\Rightarrow$  error channel reduces to depolarizing channel
- 4th moments allow to control variance
- $\Rightarrow$  better concentration
- ⇒ substantial improvement in sequence length, cf. Joel's talk, Stephanie's talk

- 2-design property of Clifford group essential for twirling
- $\Rightarrow\,$  error channel reduces to depolarizing channel
  - 4th moments allow to control variance
- $\Rightarrow$  better concentration
- ⇒ substantial improvement in sequence length, cf. Joel's talk, Stephanie's talk

- 2-design property of Clifford group essential for twirling
- $\Rightarrow\,$  error channel reduces to depolarizing channel
  - 4th moments allow to control variance
- $\Rightarrow$  better concentration
- ⇒ substantial improvement in sequence length, cf. Joel's talk, Stephanie's talk

- 2-design property of Clifford group essential for twirling
- $\Rightarrow\,$  error channel reduces to depolarizing channel
  - 4th moments allow to control variance
- $\Rightarrow$  better concentration
- ⇒ substantial improvement in sequence length, cf. Joel's talk, Stephanie's talk

- 2-design property of Clifford group essential for twirling
- $\Rightarrow\,$  error channel reduces to depolarizing channel
  - 4th moments allow to control variance
- $\Rightarrow$  better concentration
- $\Rightarrow\,$  substantial improvement in sequence length, cf. Joel's talk, Stephanie's talk

Task: distinguish two pure quantum states with a single measurement
 Heistrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

- Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\operatorname{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$
- 2-design measurements are really bad: ||*M*<sub>2D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ <sup>1</sup>/<sub>d</sub> ||φ − ψ||<sub>1</sub>
   4-design measurements are optimal: ||*M*<sub>4D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ ||φ − ψ||<sub>1</sub>

- Task: distinguish two pure quantum states with a single measurement
- Helstrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

• Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\operatorname{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$ 

2-design measurements are really bad: ||*M*<sub>2D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ <sup>1</sup>/<sub>d</sub> ||φ − ψ||<sub>1</sub>
 4-design measurements are optimal: ||*M*<sub>4D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ ||φ − ψ||<sub>1</sub>

- Task: distinguish two pure quantum states with a single measurement
- Helstrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

- Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\text{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$
- 2-design measurements are really bad: ||*M*<sub>2D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ <sup>1</sup>/<sub>d</sub> ||φ − ψ||<sub>1</sub>
   4-design measurements are optimal: ||*M*<sub>4D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ ||φ − ψ||<sub>1</sub>

- Task: distinguish two pure quantum states with a single measurement
- Helstrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

- Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\operatorname{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$
- 2-design measurements are really bad: ||*M*<sub>2D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ <sup>1</sup>/<sub>d</sub> ||φ − ψ||<sub>1</sub>
   4-design measurements are optimal: ||*M*<sub>4D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ ||φ − ψ||<sub>1</sub>

- Task: distinguish two pure quantum states with a single measurement
- Helstrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

- Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\operatorname{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$
- 2-design measurements are really bad: ||*M*<sub>2D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ <sup>1</sup>/<sub>d</sub> ||φ − ψ||<sub>1</sub>
   4-design measurements are optimal: ||*M*<sub>4D</sub>(φ − ψ)||<sub>ℓ1</sub> ≃ ||φ − ψ||<sub>1</sub>

- Task: distinguish two pure quantum states with a single measurement
- Helstrom's theorem:

$$\Pr\left[\operatorname{success}\right] \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

- Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a POVM  $\mathcal{M}$ :  $\Pr[\operatorname{success}] \leq \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\phi - \psi)\|_{\ell_1}$
- 2-design measurements are really bad:  $\|\mathcal{M}_{2D}(\phi \psi)\|_{\ell_1} \simeq \frac{1}{d} \|\phi \psi\|_1$
- 4-design measurements are optimal:  $\|\mathcal{M}_{4D}(\phi \psi)\|_{\ell_1} \simeq \|\phi \psi\|_1$

• 
$$\mathcal{M}_{4\mathrm{D}} = \left\{ \frac{d}{N} \psi_i \right\}_{i=1}^N$$

- $\|\mathcal{M}(\phi \psi)\|_{\ell_1} = \frac{d}{N} \sum_{i=1}^N |\langle \psi_i | \phi \psi | \psi_i \rangle| = d\mathbb{E}[|S|]$ •  $\mathbb{E}[S] = 0$
- use anti-concentration:

$$\mathbb{E}\left[|S|\right] \geq \sqrt{\frac{\mathbb{E}\left[S^2\right]^3}{\mathbb{E}\left[S^4\right]}}$$

• 4-design property allows for computing  $\mathbb{E}\left[S^2
ight], \mathbb{E}\left[S^4
ight]$ 

• 
$$\mathcal{M}_{4\mathrm{D}} = \left\{ \frac{d}{N} \psi_i \right\}_{i=1}^N$$

- $\|\mathcal{M}(\phi \psi)\|_{\ell_1} = \frac{d}{N} \sum_{i=1}^N |\langle \psi_i | \phi \psi | \psi_i \rangle| = d\mathbb{E}[|S|]$
- use anti-concentratio

$$\mathbb{E}\left[|S|\right] \geq \sqrt{\frac{\mathbb{E}\left[S^2\right]^3}{\mathbb{E}\left[S^4\right]}}$$

• 4-design property allows for computing  $\mathbb{E}\left[S^2\right], \mathbb{E}\left[S^4\right]$ 

• 
$$\mathcal{M}_{4\mathrm{D}} = \left\{ \frac{d}{N} \psi_i \right\}_{i=1}^N$$

- $\|\mathcal{M}(\phi \psi)\|_{\ell_1} = \frac{d}{N} \sum_{i=1}^N |\langle \psi_i | \phi \psi | \psi_i \rangle| = d\mathbb{E}[|S|]$ •  $\mathbb{E}[S] = 0$
- use anti-concentration:

$$\mathbb{E}\left[|S|\right] \geq \sqrt{\frac{\mathbb{E}\left[S^2\right]^3}{\mathbb{E}\left[S^4\right]}}$$

• 4-design property allows for computing  $\mathbb{E}\left[S^2\right], \mathbb{E}\left[S^4\right]$ 

• 
$$\mathcal{M}_{4\mathrm{D}} = \left\{ \frac{d}{N} \psi_i \right\}_{i=1}^N$$

- $\|\mathcal{M}(\phi \psi)\|_{\ell_1} = \frac{d}{N} \sum_{i=1}^N |\langle \psi_i | \phi \psi | \psi_i \rangle| = d\mathbb{E}[|S|]$
- $\mathbb{E}[S] = 0$
- use anti-concentration:

$$\mathbb{E}\left[|S|\right] \geq \sqrt{rac{\mathbb{E}\left[S^2
ight]^3}{\mathbb{E}\left[S^4
ight]}}$$

• 4-design property allows for computing  $\mathbb{E}\left[S^2\right], \mathbb{E}\left[S^4\right]$ 

• 
$$\mathcal{M}_{4\mathrm{D}} = \left\{ \frac{d}{N} \psi_i \right\}_{i=1}^N$$

- $\|\mathcal{M}(\phi \psi)\|_{\ell_1} = \frac{d}{N} \sum_{i=1}^N |\langle \psi_i | \phi \psi | \psi_i \rangle| = d\mathbb{E}[|S|]$
- $\mathbb{E}[S] = 0$
- use anti-concentration:

$$\mathbb{E}\left[|S|\right] \geq \sqrt{rac{\mathbb{E}\left[S^2
ight]^3}{\mathbb{E}\left[S^4
ight]}}$$

• 4-design property allows for computing  $\mathbb{E}\left[S^{2}\right], \mathbb{E}\left[S^{4}\right]$ 

#### • Task: recover rank-r states $\rho$ of d-level systems ( $r \ll d$ )

- Construct a POVM A that contains N ≥ rd log(d) random elements of a 4-design
- w.h.p any rank-r ρ can be recovered from frequencies f = A(ρ) via solving (RiK, Rauhut, Terstiege)

 $\underset{Z\geq 0}{\operatorname{minimize}} \|\mathcal{A}(Z) - f\|_{\ell_2}$ 

- Task: recover rank-r states  $\rho$  of d-level systems ( $r \ll d$ )
- Construct a POVM A that contains N ≥ rd log(d) random elements of a 4-design
- w.h.p any rank-r ρ can be recovered from frequencies f = A(ρ) via solving (RiK, Rauhut, Terstiege)

 $\underset{Z\geq 0}{\operatorname{minimize}} \|\mathcal{A}(Z) - f\|_{\ell_2}$ 

- Task: recover rank-r states  $\rho$  of d-level systems ( $r \ll d$ )
- Construct a POVM A that contains N ≥ rd log(d) random elements of a 4-design
- w.h.p any rank- $r \rho$  can be recovered from frequencies  $f = A(\rho)$  via solving (RiK, Rauhut, Terstiege)

 $\underset{Z\geq 0}{\operatorname{minimize}} \|\mathcal{A}(Z) - f\|_{\ell_2}$ 

- Task: recover rank-r states  $\rho$  of d-level systems ( $r \ll d$ )
- Construct a POVM A that contains N ≥ rd log(d) random elements of a 4-design
- w.h.p any rank-r ρ can be recovered from frequencies f = A(ρ) via solving (RiK, Rauhut, Terstiege)

$$\underset{Z\geq 0}{\operatorname{minimize}} \|\mathcal{A}(Z) - f\|_{\ell_2}$$

#### • 4-designs often yield essentially optimal results

- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

# $\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$

- $ullet \ |\phi
  angle = |0
  angle^{\otimes n} \Rightarrow {
  m stabilizer states}$
- these orbits form 3-designs (Zhu, Webb, RiK, Gross)

- 4-designs often yield essentially optimal results
- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

# $\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$

- $ullet ~~|\phi
  angle = |0
  angle^{\otimes n} \Rightarrow$  stabilizer states
- these orbits form 3-designs (Zhu, Webb, RiK, Gross)

- 4-designs often yield essentially optimal results
- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

$$\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$$

$$ullet ~~|\phi
angle = |0
angle^{\otimes n} \Rightarrow$$
 stabilizer states

• these orbits form 3-designs (Zhu, Webb, RiK, Gross)

- 4-designs often yield essentially optimal results
- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

$$\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$$

• 
$$|\phi
angle = |0
angle^{\otimes n} \Rightarrow$$
 stabilizer states

these orbits form 3-designs (Zhu, Webb, RiK, Gross)

- 4-designs often yield essentially optimal results
- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

$$\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$$

• 
$$|\phi
angle = |0
angle^{\otimes n} \Rightarrow$$
 stabilizer states

• these orbits form 3-designs (Zhu, Webb, RiK, Gross)

- 4-designs often yield essentially optimal results
- No concrete/nice examples of 4-designs
- multi-qubit Clifford orbits  $(d = 2^n)$ :

$$\{\psi_i\}_{i=1}^N = \{C|\phi\rangle: \ C \in \operatorname{Cl}(d)\}$$

• 
$$|\phi
angle = |0
angle^{\otimes n} \Rightarrow$$
 stabilizer states

• these orbits form 3-designs (Zhu, Webb, RiK, Gross)

#### Technical part

$$\mathbb{E}\left[(|\psi\rangle\!\langle\psi|)^{\otimes 4}\right] \simeq \sum_{\substack{C \in \mathrm{Cl}(2^n) \\ =}} C^{\otimes 4} \left(|\phi\rangle\!\langle\phi|\right)^{\otimes 4} \left(C^{\dagger}\right)^{\otimes 4}$$

 $\Rightarrow$  find irreps in  $C \mapsto C^{\otimes 4}$  of  $\operatorname{Cl}(2^n)$ 



 $\Box = U(d) \quad i = ps$   $\Box = CRi \quad i = ps$ 







#### • Task: find invariant subspaces under $C \mapsto C^{\otimes 4}$

- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow ~ \left[ P^{\otimes 4}, Q^{\otimes 4} 
  ight] = 0$  for all Pauli's  $P, Q \in \mathrm{P}(d)$  (Pauli matrices)
- $\Rightarrow \ ig\{ P^{\otimes 4}: P \in \mathrm{P}(d) ig\}$  defines stabilizer code
- V is invariant under  $C^{\otimes 4}$
- this is the only additional invariant

- Task: find invariant subspaces under  $C \mapsto C^{\otimes 4}$
- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow ~ \left[ P^{\otimes 4}, Q^{\otimes 4} 
  ight] = 0$  for all Pauli's  $P, Q \in \mathrm{P}(d)$  (Pauli matrices)
- $\Rightarrow \ \left\{ P^{\otimes 4} : P \in \mathrm{P}(d) 
  ight\}$  defines stabilizer code
- V is invariant under  $C^{\otimes 4}$
- this is the only additional invariant

- Task: find invariant subspaces under  $C \mapsto C^{\otimes 4}$
- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow [P^{\otimes 4}, Q^{\otimes 4}] = 0$  for all Pauli's  $P, Q \in P(d)$  (Pauli matrices)
- $\Rightarrow ig\{ P^{\otimes 4}: P \in \mathrm{P}(d) ig\}$  defines stabilizer code
- V is invariant under  $C^{\otimes 4}$
- this is the only additional invariant

- Task: find invariant subspaces under  $C \mapsto C^{\otimes 4}$
- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow \ \left[ P^{\otimes 4}, Q^{\otimes 4} \right] = 0 \text{ for all Pauli's } P, Q \in \mathrm{P}(d) \text{ (Pauli matrices)}$
- $\Rightarrow \{P^{\otimes 4}: P \in \mathrm{P}(d)\}$  defines stabilizer code
  - V is invariant under  $C^{\otimes}$
  - this is the only additional invariant

- Task: find invariant subspaces under  $C \mapsto C^{\otimes 4}$
- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow \ \left[ P^{\otimes 4}, Q^{\otimes 4} \right] = 0 \text{ for all Pauli's } P, Q \in \mathrm{P}(d) \text{ (Pauli matrices)}$
- $\Rightarrow \{ P^{\otimes 4} : P \in \mathrm{P}(d) \}$  defines stabilizer code
  - V is invariant under  $C^{\otimes 4}$
  - this is the only additional invariant

- Task: find invariant subspaces under  $C \mapsto C^{\otimes 4}$
- key insight:  $i^4 = (-1)^4 = (-i)^4 = 1^4 = 1$
- $\Rightarrow \ \left[ P^{\otimes 4}, Q^{\otimes 4} \right] = 0 \ \text{for all Pauli's } P, Q \in \mathrm{P}(d) \ \text{(Pauli matrices)}$
- $\Rightarrow \ \left\{ P^{\otimes 4} : P \in \mathrm{P}(d) 
  ight\}$  defines stabilizer code
  - V is invariant under  $C^{\otimes 4}$
  - this is the only additional invariant

#### Main technical result

#### Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

- All irreps of the 4th tensor power of the Clifford group are obtained by intersecting an irrep of U(d) with V, or V<sup>⊥</sup>.
- the stabilizer group of V is given by the 4th tensor power of all Pauli matrices.
- Corollary: Every Clifford orbit  $\{\psi_i\}_{i=1}^N = \{C|\phi\rangle : C \in Cl(d)\}$  obeys  $\mathbb{E}\left[(|\psi\rangle\langle\psi|)^{\otimes 4}\right] = \alpha_1(\phi)P_1 + \alpha_2(\phi)P_2 \quad P_1 + P_2 = P_{Sym^4}$

 $\Rightarrow$  choosing  $\phi\in\mathbb{C}^d$  such that  $lpha_1(\phi)=lpha_2(\phi)$  results in 4-designs

#### Main technical result

#### Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

- All irreps of the 4th tensor power of the Clifford group are obtained by intersecting an irrep of U(d) with V, or V<sup>⊥</sup>.
- the stabilizer group of V is given by the 4th tensor power of all Pauli matrices.
- **Corollary:** Every Clifford orbit  $\{\psi_i\}_{i=1}^N = \{C | \phi \rangle : C \in Cl(d)\}$  obeys

$$\mathbb{E}\left[\left(|\psi\rangle\!\langle\psi|\right)^{\otimes 4}\right] = \alpha_1(\phi)P_1 + \alpha_2(\phi)P_2 \quad P_1 + P_2 = \mathbf{P}_{\mathrm{Sym}^4}$$

 $\Rightarrow$  choosing  $\phi\in\mathbb{C}^d$  such that  $lpha_1(\phi)=lpha_2(\phi)$  results in 4-designs

#### Main technical result

#### Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

- All irreps of the 4th tensor power of the Clifford group are obtained by intersecting an irrep of U(d) with V, or V<sup>⊥</sup>.
- the stabilizer group of V is given by the 4th tensor power of all Pauli matrices.
- **Corollary:** Every Clifford orbit  $\{\psi_i\}_{i=1}^N = \{C | \phi \rangle : C \in Cl(d)\}$  obeys

$$\mathbb{E}\left[(|\psi\rangle\!\langle\psi|)^{\otimes 4}\right] = \alpha_1(\phi)P_1 + \alpha_2(\phi)P_2 \quad P_1 + P_2 = P_{\text{Sym}^4}$$

 $\Rightarrow$  choosing  $\phi \in \mathbb{C}^d$  such that  $\alpha_1(\phi) = \alpha_2(\phi)$  results in 4-designs

#### Applications

- Randomized benchmarking, cf. Joel+Stephanie
- Distinguishing quantum states
- state tomography/compressed sensing
- entropic uncertainty relations

$$\Pr[\text{success}] \le \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\psi - \phi)\|_{\ell_1} \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

• 
$$\|\mathcal{M}_{4d}(\psi-\phi)\|_{\ell_1} \simeq \|\psi-\phi\|_1$$
 (optimal)  
•  $\|\mathcal{M}_{2d}(\psi-\phi)\|_{\ell_1} \simeq \frac{1}{d}\|\psi-\phi\|_1$  (bad)

#### Theorem 3 (RiK, Zhu, Gross 2016)

Set  $d = 2^n$  and let  $\mathcal{M}$  be any Clifford orbit (e.g. stabilizer states). Then

 $\|\mathcal{M}(\phi-\psi)\|_{\ell_1}\simeq \|\phi-\psi\|_1 \quad \forall \psi, \phi \text{ pure.}$ 

This result becomes worse for highly mixed states.

$$\Pr[\text{success}] \le \frac{1}{2} + \frac{1}{4} \|\mathcal{M}(\psi - \phi)\|_{\ell_1} \le \frac{1}{2} + \frac{1}{4} \|\phi - \psi\|_1$$

• 
$$\|\mathcal{M}_{4d}(\psi - \phi)\|_{\ell_1} \simeq \|\psi - \phi\|_1$$
 (optimal)  
•  $\|\mathcal{M}_{2d}(\psi - \phi)\|_{\ell_1} \simeq \frac{1}{d}\|\psi - \phi\|_1$  (bad)

#### Theorem 3 (RiK, Zhu, Gross 2016)

Set  $d = 2^n$  and let  $\mathcal{M}$  be any Clifford orbit (e.g. stabilizer states). Then

$$\|\mathcal{M}(\phi-\psi)\|_{\ell_1}\simeq \|\phi-\psi\|_1 \quad \forall \psi, \phi \text{ pure.}$$

This result becomes worse for highly mixed states.

#### **Task:** recover rank-*r* states of *d*-level systems ( $r \ll d$ )

#### Theorem 4 (RiK, Zhu, Gross 2016)

Fix  $d = 2^n$ ,  $r \le d$  Let  $\mathcal{A}$  be a POVM that contains  $N \ge r^3 d \log(d)$ random elements of a Clifford orbit. Then w.h.p. any rank-r  $\rho$  can be recovered from frequencies  $f = \mathcal{A}(\rho)$  via solving

$$\underset{Z\geq 0}{\text{minimize}} \quad \|\mathcal{A}(Z)-f\|_{\ell_2}.$$

*This reconstruction is stable under noise corruption and relaxation of the rank-r constraint.* 

• For pure states (*r* = 1) the associated sample complexity is optimal up to log-factors.

**Task:** recover rank-*r* states of *d*-level systems ( $r \ll d$ )

#### Theorem 4 (RiK, Zhu, Gross 2016)

Fix  $d = 2^n$ ,  $r \le d$  Let  $\mathcal{A}$  be a POVM that contains  $N \ge r^3 d \log(d)$ random elements of a Clifford orbit. Then w.h.p. any rank-r  $\rho$  can be recovered from frequencies  $f = \mathcal{A}(\rho)$  via solving

$$\underset{Z\geq 0}{\textit{minimize}} \quad \|\mathcal{A}(Z) - f\|_{\ell_2}.$$

This reconstruction is stable under noise corruption and relaxation of the rank-r constraint.

 For pure states (r = 1) the associated sample complexity is optimal up to log-factors.

**Task:** recover rank-*r* states of *d*-level systems ( $r \ll d$ )

#### Theorem 4 (RiK, Zhu, Gross 2016)

Fix  $d = 2^n$ ,  $r \le d$  Let  $\mathcal{A}$  be a POVM that contains  $N \ge r^3 d \log(d)$ random elements of a Clifford orbit. Then w.h.p. any rank-r  $\rho$  can be recovered from frequencies  $f = \mathcal{A}(\rho)$  via solving

$$\underset{Z\geq 0}{\text{minimize}} \quad \|\mathcal{A}(Z) - f\|_{\ell_2}.$$

This reconstruction is stable under noise corruption and relaxation of the rank-r constraint.

• For pure states (*r* = 1) the associated sample complexity is optimal up to log-factors.



$$rac{1}{d+1}\sum_{k=1}^{d+1} H\left( \mathcal{B}_k | 
ho 
ight) \geq \log_2(d+1) - 1$$

- Derivation only uses 2-design property
- Wehner, Winter: exploit higher moments?
- Stabilizer states also form ONBs + "kind of" 4-designs

$$rac{1}{d+1}\sum_{k=1}^{d+1} H\left( \mathcal{B}_k | 
ho 
ight) \geq \log_2(d+1) - 1$$

- Derivation only uses 2-design property
- Wehner, Winter: exploit higher moments?
- Stabilizer states also form ONBs + "kind of" 4-designs

$$rac{1}{d+1}\sum_{k=1}^{d+1} H\left( \mathcal{B}_k | 
ho 
ight) \geq \log_2(d+1) - 1$$

- Derivation only uses 2-design property
- Wehner, Winter: exploit higher moments?
- Stabilizer states also form ONBs + "kind of" 4-designs

$$rac{1}{d+1}\sum_{k=1}^{d+1} H\left( \mathcal{B}_k | 
ho 
ight) \geq \log_2(d+1) - 1$$

- Derivation only uses 2-design property
- Wehner, Winter: exploit higher moments?
- Stabilizer states also form ONBs + "kind of" 4-designs

Ansatz:

$$\frac{1}{M}\sum_{k=1}^{m} H(\mathcal{B}_{k}|\rho) \gtrsim -\frac{1}{\epsilon} \log_{2} \left( \mathbb{E} \left[ \langle \psi_{k}|\rho|\psi_{k}\rangle^{1+\epsilon} \right] \right) \quad \alpha = 1+\epsilon$$

•  $\langle \psi_k | 
ho | \psi_k 
angle$  is a r.v. on [0, 1]  $\Rightarrow$  replace  $\langle \psi_k | 
ho | \psi_k 
angle$  by solution of

$$\begin{array}{ll} \underset{\mu:[0,1]\to[0,1]}{\text{maximize}} & \int_{0}^{1} \mu(x) x^{1+\alpha} \mathrm{d}x \\ \text{subject to} & \int_{0}^{1} \mu(x) x^{k} = c_{k} \quad k = 1, 2, 3, 4 \\ & \int_{0}^{1} \mu(x) \mathrm{d}x = 1, \ \mu(x) \ge 0 \end{array}$$

#### discretize [0, 1] to obtain a LP

Ansatz:

$$\frac{1}{M}\sum_{k=1}^{m} H(\mathcal{B}_{k}|\rho) \gtrsim -\frac{1}{\epsilon} \log_{2} \left( \mathbb{E} \left[ \langle \psi_{k}|\rho|\psi_{k}\rangle^{1+\epsilon} \right] \right) \quad \alpha = 1+\epsilon$$

•  $\langle \psi_k | \rho | \psi_k \rangle$  is a r.v. on [0,1]  $\Rightarrow$  replace  $\langle \psi_k | \rho | \psi_k \rangle$  by solution of

$$\begin{array}{ll} \underset{\mu:[0,1]\to[0,1]}{\text{maximize}} & \int_{0}^{1} \mu(x) x^{1+\alpha} \mathrm{d}x \\ \text{subject to} & \int_{0}^{1} \mu(x) x^{k} = c_{k} \quad k = 1, 2, 3, 4 \\ & \int_{0}^{1} \mu(x) \mathrm{d}x = 1, \ \mu(x) \ge 0 \end{array}$$

#### discretize [0, 1] to obtain a LP

• Ansatz:

$$\frac{1}{M}\sum_{k=1}^{m} H(\mathcal{B}_{k}|\rho) \gtrsim -\frac{1}{\epsilon} \log_{2} \left( \mathbb{E} \left[ \langle \psi_{k}|\rho|\psi_{k}\rangle^{1+\epsilon} \right] \right) \quad \alpha = 1+\epsilon$$

• 
$$\langle \psi_k | \rho | \psi_k \rangle$$
 is a r.v. on [0, 1]  
 $\Rightarrow$  replace  $\langle \psi_k | \rho | \psi_k \rangle$  by solution of

$$\begin{array}{ll} \underset{\mu:[0,1]\to[0,1]}{\text{maximize}} & \int_0^1 \mu(x) x^{1+\alpha} \mathrm{d}x \\ \text{subject to} & \int_0^1 \mu(x) x^k = c_k \quad k = 1, 2, 3, 4 \\ & \int_0^1 \mu(x) \mathrm{d}x = 1, \ \mu(x) \ge 0 \end{array}$$

discretize [0, 1] to obtain a LP

• Ansatz:

$$\frac{1}{M}\sum_{k=1}^{m} H(\mathcal{B}_{k}|\rho) \gtrsim -\frac{1}{\epsilon} \log_{2} \left( \mathbb{E}\left[ \langle \psi_{k}|\rho|\psi_{k}\rangle^{1+\epsilon} \right] \right) \quad \alpha = 1+\epsilon$$

• 
$$\langle \psi_k | \rho | \psi_k \rangle$$
 is a r.v. on [0,1]  
 $\Rightarrow$  replace  $\langle \psi_k | \rho | \psi_k \rangle$  by solution of

$$\begin{array}{ll} \underset{\mu:[0,1]\to[0,1]}{\text{maximize}} & \int_0^1 \mu(x) x^{1+\alpha} \mathrm{d}x \\ \text{subject to} & \int_0^1 \mu(x) x^k = c_k \quad k = 1, 2, 3, 4 \\ & \int_0^1 \mu(x) \mathrm{d}x = 1, \ \mu(x) \ge 0 \end{array}$$

 $\bullet\,$  discretize [0,1] to obtain a LP

Theorem 5 (RiK, Zhu, Gross 2016)

For  $d = 2^n$ , stabilizer bases  $\{\mathcal{B}_k\}_{k=1}^M$  obey

$$rac{1}{M}\sum_{k=1}^M H\left(\mathcal{B}_k|
ho
ight) \geq \log_2(d) - c(d) \quad \lim_{d o\infty} c(d)\simeq 0.854 < 1.$$



# Summary

- We have characterized the 4th moments of Clifford orbits in  $d = 2^n$
- The *t* = 4-case really matters!
- Applications include
  - randomized benchmarking
  - quantum state discrimination
  - state tomography (compressed sensing)
  - entropic uncertainty relations