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Outline

Introduction: 4-designs

Justification: 4th moments do matter:

randomized benchmarking
distinguishing quantum states
state tomography via compressed sensing

Technical part: 4th moments of Clifford orbits

Implications:

distinguishing quantum states
state tomography via compressed sensing
entropic uncertainty relations
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Spherical t-designs

Many results in quantum info rely on
randomized constructions/analysis

Haar-random states/measurements obey

E
[
(|ψ〉〈ψ|)⊗k

]
∝ PSymk k ∈ N (1)

Definition 1 (Spherical designs)

A t-design {ψi}Ni=1 ⊂ Cd obeys Eq. (1) up to k = t.
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Spherical t-designs: examples

E
[
(|ψi 〉〈ψi |)⊗t

]
∝ PSymk

ONBs form 1-designs

SICs, MUBs, Clifford orbits form 2-designs

RiK@USYD 2015: multi-qubit Clifford orbits form 3-designs

RiK@Coogee 2017: multi-qubit Clifford orbits almost form 4-designs

RiK@Coogee 2018: multi-qubit Clifford orbits kinda form 5-designs

RiK@Coogee 2019: multi-qubit Clifford orbits morally form 6-designs

NO!!! t = 4 is really special
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Randomized benchmarking

2-design property of Clifford group essential for twirling

⇒ error channel reduces to depolarizing channel

4th moments allow to control variance

⇒ better concentration

⇒ substantial improvement in sequence length, cf. Joel’s talk,
Stephanie’s talk
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Distinguishing quantum states

Task: distinguish two pure quantum states with a single measurement

Helstrom’s theorem:

Pr [success] ≤ 1

2
+

1

4
‖φ− ψ‖1

Twist: (Ambainis, Emerson; Matthews, Wehner, Winter) fix a
POVM M:

Pr [success] ≤ 1

2
+

1

4
‖M(φ− ψ)‖`1

2-design measurements are really bad: ‖M2D(φ−ψ)‖`1 ' 1
d ‖φ−ψ‖1

4-design measurements are optimal: ‖M4D(φ− ψ)‖`1 ' ‖φ− ψ‖1
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Distinguishing quantum states

M4D =
{

d
Nψi

}N
i=1

‖M(φ− ψ)‖`1 = d
N

∑N
i=1 |〈ψi |φ− ψ|ψi 〉| = dE [|S |]

E [S ] = 0

use anti-concentration:

E [|S |] ≥

√
E [S2]3

E [S4]

4-design property allows for computing E
[
S2
]
,E
[
S4
]
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State tomography/compressed sensing

Task: recover rank-r states ρ of d-level systems (r � d)

Construct a POVM A that contains N ? rd log(d) random elements
of a 4-design

w.h.p any rank-r ρ can be recovered from frequencies f = A(ρ) via
solving (RiK, Rauhut, Terstiege)

minimize
Z≥0

‖A(Z )− f ‖`2

Anti-concentration again crucial
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4th moments of Clifford orbits

4-designs often yield essentially optimal results

No concrete/nice examples of 4-designs

multi-qubit Clifford orbits (d = 2n):

{ψi}Ni=1 = {C |φ〉 : C ∈ Cl(d)}

|φ〉 = |0〉⊗n ⇒ stabilizer states

these orbits form 3-designs (Zhu, Webb, RiK, Gross)

Promote them by understanding 4th moments
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Technical part

E
[
(|ψ〉〈ψ|)⊗4

]
'

∑
C∈Cl(2n)

C⊗4 (|φ〉〈φ|)⊗4
(
C †
)⊗4

Schur
=
∑
α

cαPα

⇒ find irreps in C 7→ C⊗4 of Cl(2n)
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Rep. theory of the Clifford group

Task: find invariant subspaces under C 7→ C⊗4

key insight: i4 = (−1)4 = (−i)4 = 14 = 1

⇒
[
P⊗4,Q⊗4

]
= 0 for all Pauli’s P,Q ∈ P(d) (Pauli matrices)

⇒
{
P⊗4 : P ∈ P(d)

}
defines stabilizer code

V is invariant under C⊗4

this is the only additional invariant
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Main technical result

Theorem 2 (Zhu, RiK, Grassl, Gross 2016)

All irreps of the 4th tensor power of the Clifford group are obtained
by intersecting an irrep of U(d) with V , or V⊥.

the stabilizer group of V is given by the 4th tensor power of all Pauli
matrices.

Corollary: Every Clifford orbit {ψi}Ni=1 = {C |φ〉 : C ∈ Cl(d)} obeys

E
[
(|ψ〉〈ψ|)⊗4

]
= α1(φ)P1 + α2(φ)P2 P1 + P2 = PSym4

⇒ choosing φ ∈ Cd such that α1(φ) = α2(φ) results in 4-designs
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Applications

Randomized benchmarking, cf. Joel+Stephanie

Distinguishing quantum states

state tomography/compressed sensing

entropic uncertainty relations
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Distinguishing pure quantum states

Pr [success] ≤ 1

2
+

1

4
‖M(ψ − φ)‖`1 ≤

1

2
+

1

4
‖φ− ψ‖1

‖M4d(ψ − φ)‖`1 ' ‖ψ − φ‖1 (optimal)

‖M2d(ψ − φ)‖`1 ' 1
d ‖ψ − φ‖1 (bad)

Theorem 3 (RiK, Zhu, Gross 2016)

Set d = 2n and let M be any Clifford orbit (e.g. stabilizer states). Then

‖M(φ− ψ)‖`1 ' ‖φ− ψ‖1 ∀ψ, φ pure.

This result becomes worse for highly mixed states.
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State tomography/compressed sensing

Task: recover rank-r states of d-level systems (r � d)

Theorem 4 (RiK, Zhu, Gross 2016)

Fix d = 2n, r ≤ d Let A be a POVM that contains N ? r3d log(d)
random elements of a Clifford orbit. Then w.h.p. any rank-r ρ can be
recovered from frequencies f = A(ρ) via solving

minimize
Z≥0

‖A(Z )− f ‖`2 .

This reconstruction is stable under noise corruption and relaxation of the
rank-r constraint.

For pure states (r = 1) the associated sample complexity is optimal
up to log-factors.
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Dimension
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Entropic uncertainty relations

A maximal set of MUBs obeys

1

d + 1

d+1∑
k=1

H (Bk |ρ) ≥ log2(d + 1)− 1

Derivation only uses 2-design property

Wehner, Winter: exploit higher moments?

Stabilizer states also form ONBs + “kind of” 4-designs
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Entropic uncertainty relations for stabilizer states

Ansatz:

1

M

m∑
k=1

H(Bk |ρ) ? −1

ε
log2

(
E
[
〈ψk |ρ|ψk〉1+ε

])
α = 1 + ε

〈ψk |ρ|ψk〉 is a r.v. on [0, 1]

⇒ replace 〈ψk |ρ|ψk〉 by solution of

maximize
µ:[0,1]→[0,1]

∫ 1

0
µ(x)x1+αdx

subject to

∫ 1

0
µ(x)xk = ck k = 1, 2, 3, 4∫ 1

0
µ(x)dx = 1, µ(x) ≥ 0

discretize [0, 1] to obtain a LP
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Entropic uncertainty relations for stabilizer states

Theorem 5 (RiK, Zhu, Gross 2016)

For d = 2n, stabilizer bases {Bk}Mk=1 obey

1

M

M∑
k=1

H (Bk |ρ) ≥ log2(d)− c(d) lim
d→∞

c(d) ' 0.854 < 1.
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<
S

>
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lo
g(
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stab
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Summary

We have characterized the 4th moments of Clifford orbits in d = 2n

The t = 4-case really matters!

Applications include

randomized benchmarking
quantum state discrimination
state tomography (compressed sensing)
entropic uncertainty relations
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