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2D, non-chiral, long range entangled topological phases

» In Fault-tolerant quantum computation by anyons, Kitaev
defined a model associated to a finite group G.

» When G = Z/2Z, we get the bulk phase from the toric code.

» |In String-net condensation: A physical mechanism for
topological phases, Levin and Wen defined a model associated
to a fusion category C.

» When C = Vec(G), the category of G-graded vector spaces,

the Levin-Wen model and the Kitaev model define the same
phase of matter.
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The tensor F must satisfy the pentagon equation, also known
as the 3-2 Pachner equation.
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Example: Vec(G): G-graded vector spaces

Let G be a finite group and g, h, k € G.

gh
Vec(G) is generated by )\
g h

and the generators satisfy the relation
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The Guiding Principle

Let C be a fusion category and X an orientable
2-dimensional surface possibly with boundary.

We define

Diagrams from C drawn on
> upto isotopy and relations.
Strings are allowed to terminate
on the boundary.

Zc(X)=C

In mathematics, Z¢ is called a fully extended (2+1)D
topological quantum field theory. It captures the
renormalization invariant properties of the Levin-Wen model.



Ground states on the torus

Let A be an Abelian group and T the torus.



Ground states on the torus

Let A be an Abelian group and T the torus.
We have

ZVec(A)(T) =C




Ground states on the torus

Let A be an Abelian group and T the torus.
We have

ZVec(A)(T) =C

V

The phase corresponding to A has |A|? ground states on the
torus.



Question

How many domain walls are there between two chunks of the
Z/27 phase?



At least 6.

Domain wall

Action on particles
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Condenses m on both sides

trivial domain wall
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» In Models for gapped boundaries and domain walls, Kitaev
and Kong demonstrated that domain walls between the
Levin-Wen phases associated to C and D correspond to
simple C—D bimodule categories.

» Ostrik’s Theorem:

subgroups P of G x H°P

{simple Vec(G)—Vec(H)} o and cohomology classes

bimodule categories w € H2(P,U(1)) mod-
ulo conjugation
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What is a bimodule category?

n P
Generated by trivalent vertices /i A 2 |\
am q b

We impose the relations

Gk
R -E ”M

The tensors L, R, C satisfy a dizzying number of coherence
equations.



Vec(Z/27)—Vec(Z/27Z) bimodules
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Vec(Z/27)—Vec(Z/27Z) bimodules
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The Correspondence

Bimodule Domain Wall
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Proof:

We can compute the following table in two ways:

Qzpz | T L R Fb X F
T 2-T T 2-R R T R
L 2-L L 2-Fo Fo L Fo
R T 2-T R 2-R R T
Fo L 2-L Fo 2-Fp Fp L
X T L R F X A
F L T Fo R R X
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Method 1: Domain Walls
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Method 2: Bimodules

> Explicitly compute all the relative tensor products M ®z, 57 N
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> Explicitly compute all the relative tensor products M ®z, 57 N

» See Domain walls in topological phases and the Brauer-Picard
ring for Vec(Z/pZ), arXiv:1806.01279 for details.
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The Guiding Principle Again

Let X an orientable 2-dimensional surface possibly with
boundary, decorated with bimodule strings.

Define
Fusion  category diagrams}

Z(¥) = (C{drawn on X upto isotopy and
relations.

In mathematics, Z is called a defect topological quantum field
theory.
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Then Mg, poMg, ., = (—1)"8 My i g1 ho+ny - This algebra is
isomorphic to the 2 x 2 matrix algebra via Mg , — Xxe&zh
(Pauli matrices). The 2 x 2 matrix algebra only has one
simple representation.
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Fusing Binary Interface Defects

» In Fusing binary interface defects in topological phases: The
Vec(Z/pZ) case, arXiv:1810.09469, we give physical
interpretations for all binary interface defects in the
7./ pZ-model.

» We also compute all possible vertical and horizontal fusions
involving binary interface defects.


https://arxiv.org/abs/1810.09469

7/ pZ Horizontal Fusion tables
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Domain Wall Structures

Domain Wall Structure algorithm: Assign defects to all the
internal holes. The DWS algorithm computes the resulting
compound defect.



Defect Fusion

vertical defect fusion.




Defect Fusion
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Thank you for Listening!

See Computing defects associated to bounded domain wall
structures: The Z/pZ case, arXiv:1901.08069 for details.


https://arxiv.org/abs/1901.08069

