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Outline

» Set-up: bCFT5 on ds? = —dt? + dx?, x > 0

» Goal: develop theory of entanglement dynamics

» Result: entanglement dynamics of bCFT is described by JT
gravity

» Entanglement renormalization in bCFT described by
Schwarzian QM — connection to cMERA

» Example of ‘geometry from entanglement’

» Future directions
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Set-up 3
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Set-up 4
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Set-up 5

bCFT, on ds? = —dt? + dx? = —dxTdx™, x > 0 in state |0)
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bCFT; on ds? = —dt? + dx?> = —dxtdx ™, x > 0 in state |0)
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local field Sp(xp,x5) =  dynamics of Sp?
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bCFT; on ds? = —dt? + dx? = —dxtdx™, x > 0 in state |0)
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local field S(x™,x~) = dynamics of S?



Entanglement
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Goal: develop a field theory for the entanglement (“theory of
entanglement dynamics”) that reproduces this equation as an EOM
Inspiration from tensor networks



Entanglement
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Goal: develop a field theory for the entanglement (“theory of
entanglement dynamics”) that reproduces this equation as an EOM
Inspiration from tensor networks

‘5 ~>  (2D) metric g‘

= dynamics of entanglement = dynamics of (2D) geometry

= (2D) gravity



Dilaton gravity

Einstein gravity

Ile. bm] = / dxdt VE(R + N) + Ilg, bm]

is trivial in 2D: EOM doesn’t allow non-zero cosmological constant
A or conformal matter stress tensor because G, = 0.



Dilaton gravity
Einstein gravity
llg,én] = [ dxdt VE(R+ 1)+ Inlg, 00

is trivial in 2D: EOM doesn’t allow non-zero cosmological constant
A or conformal matter stress tensor because G, = 0.
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Dilaton gravity
Einstein gravity
llg,én] = [ dxdt VE(R+ 1)+ Inlg, 00

is trivial in 2D: EOM doesn’t allow non-zero cosmological constant
A or conformal matter stress tensor because G, = 0.

Dilaton gravity
llg, 0] = [ dxdt VE{OR + V(®)} + Inlg. ®,0,]

Jackiw-Teitelboim (JT) dilaton gravity

Ilg. ®, ] = / dxdt \JED(R + ) + Il ]



JT gravity and entanglement

Lirlg, @, bum] = / dxdt JEO(R + A) + Il 6]

The EOM following from variation wrt ® is
R = —A.
JT metric solution is always AdSs!
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JT gravity and entanglement

Urlg. ®.6m) = [ drde VES(R+ )+ Inlg. 00
The EOM following from variation wrt ® is
R =—A.
JT metric solution is always AdSs!

In conformal gauge g, = ew(xﬂxi)nwj (or ds? = —e“dxTdx~) and
A=2
ZQ

1 w
8+8_w + ﬁe =0.

12 . ]_ _QS
8+87 <CS> - 27626 c

2
w5 +2 Iogg ds? = — (L) e B0t gt g
c ) )




JT entanglement dynamics of bCFT: metric

Part 1 of our JT entanglement dynamics theory: metric is AdS,
determined by entanglement of the bCFT.



JT gravity and modular Hamiltonian

Lrlg. . 6m] = / dxdlt \JE D(R + A) + Ilg, ]

The EOM following from variation wrt g, are

0190w — 07 d =8rGT,  (-Vid=8rGTT,)
00 w— 0P =8rGT™  (~V2d=28rGT")

A

What object in bCFT, obeys these EOM?



JT gravity and modular Hamiltonian

Lrlgs @, bm] = / dxdt JEO(R + A) + Il 6]

The EOM following from variation wrt g, are

0190w — 07 d =8rGT,  (-Vid=8rGTT,)
00 w— 0P =8rGT™  (~V2d=28rGT")

A

What object in bCFT, obeys these EOM?
Answer: modular Hamiltonian K

K~ dilaton ¢|




Modular Hamiltonian

bCFT; on ds? = —dt? + dx? = —dxtdx~, x > 0 in state |0)
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Modular Hamiltonian

bCFT; on ds? = —dt? + dx? = —dxtdx~, x > 0 in state |0)

t

4

N

local field K(x™, x™)

=
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~ interval
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dynamics of K7



Modular Hamiltonian
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Modular Hamiltonian

(s—x)(x" —s
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obeys
V430 K =21 T,
V_Oo_K=2rT__
(O0-NAN)K =0.
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Modular Hamiltonian

(s—x)(x" —s
_27T/ d X+— )T++(S)

obeys
V430 K =21 T,
V_O_K=2rT__
(O0-NAN)K =0.

—V+(9+¢ = 87TG T_T+
—V_0_b=8rGT™
(O-A)d =0

®=-4GK+dy| and M, = Ty

Part 2 and 3 of our JT entanglement dynamics theory: JT dilaton
is determined by modular Hamiltonian of the bCFT, and JT matter
sector by the bCFT matter.



JT entanglement dynamics of bCFT

Lrlg, @, 6m] = / dxdt \JED(R + N) + Ilg, )

lent dyn of bCFT[S; K, ¢m] = / dxdt /g ®(R+ A\) + /dxdt VELbCFT

with

(S~ g, K~ ® bCFT fields ~ ¢m. |




JT entanglement dynamics of bCFT

Lrlg, @, 6m] = / dxdt \JED(R + N) + Ilg, )

lent dyn of bCFT[S; K, ¢m] = / dxdt /g ®(R+ A\) + /dxdt VELbCFT

with

(S~ g, K~ ® bCFT fields ~ ¢m. |

Theory of entanglement dynamics obtained by coupling bCFT to
AdS, JT gravity.



JT entanglement dynamics of bCFT

Given bCFT> Entanglement dynamics of bCFT,;

t t
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ds? = —dt? + dx? 4e — —dt? + dx?



Recap

» bCFT, on ds? = —dt? + dx?® = —dxTdx~, x > 0 in state |0)
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» bCFT, on ds? = —dt? + dx?® = —dxTdx~, x > 0 in state |0)
» point P(x*,x7) ~ interval ~ S(x*,x7) and K(xT,x™) that
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» Theory of entanglement dynamics obtained by coupling
bCFT, to AdSy JT gravity

lent dyn of bCFT = T grav + IbcFT



Recap

» bCFT, on ds? = —dt? + dx?® = —dxTdx~, x > 0 in state |0)
» point P(x*,x7) ~ interval ~ S(x*,x7) and K(xT,x™) that
obey EOM of JT gravity with

12
w:——5+2|og€
c

5
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» Theory of entanglement dynamics obtained by coupling
bCFT, to AdSy JT gravity

lent dyn of bCFT = T grav + IbcFT

How general? For class of excited states in bCFT obtained by
conformal transformations of the lightcone coordinates X*(x™).



Connection to tensor networks

» Construction coincides with definition of boundary kinematic
space [Karch et al 1703.02990]
Kinematic space / MERA [Czech et al]

» Construction allows description of entanglement
renormalization in bCFT
cfr MERA, cMERA [Vidal, Haegeman et al]



Entanglement renormalization 1

Entanglement interpretation of ®q7

Vi0+dg =0
—e¥04(e7%01Pp) =0

Po(x) ~ — /X dx'e*™) ~ —9w ~ 8,5 = 5(x) __SE(X —¢€)
—®p = %% (S(x) — S(x —€))
o
_E = S(X) — S(X — 6)




Entanglement renormalization 2

by by 3 by
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with 0S5, = S(x) — S(x — €) the amount of entanglement between
region left of P(x, t) and boundary layer of width e
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In the JT theory, the boundary condition
_ %

€

0N

defines location of boundary {t(u), x(u)} in ds? = #
with boundary time u such that

1) ds?|p = *d?‘f
2) blp = %
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In the JT theory, the boundary condition

(0}
Py = 2
€
defines location of boundary {t(u), x(u)} in ds? = #
with boundary time u such that
2
1) d52’b = _%
2) Ofp = %
1) Family of trajectories {t(u), et’(u)} = el . _df
2) t(u) as a function of matter content of JT theory determined by
Schwarzian QM =, T) =2

(et (u), t(u); T) = 2

€

c"b/{l“, utdu + Icer



Entanglement renormalization 3

(Do (Db 3 q)o
—=-— (-0 d 05
4G 4G e C( Sb) an 4G Sb
0}
by = —b corresponds to 4S5, = —%
€
and
by = % = C;/{tv utdu + lpcrr

€ € ce
locrr = locPr + 3 /{t, uldu




Entanglement renormalization 4

Entanglement renormalization Boundary dynamics in

in given bCFT, entanglement dynamics of bCFT,

similar to cMERA described by Schwarzian QM
td\ t
5 T

)C( i x I:'

: :

ds® = —dt® + dx* —dt? + dx?

ds® =



Geometry from entanglement

Holographic argument

oM =T6S gravitational first law in AdS3 gravity
0{K)crr = 0ScrT entanglement first law in CFT,

Jacobson argument (non-holographic)

OM = T§S + 6E gravitational first law in AdS3 gravity
0 =46Scer|v condition on entanglement in CFT3

Current argument (non-holographic)

=TéS+0E gravitational first law in AdS; gravity

oo
0= 1C + 0(K) crT condition on entanglement in CFT»



Summary

» bCFT; on ds? = —dt? + dx? = —dxdx™, x > 0 in state |0)x

» Theory of entanglement dynamics obtained by coupling
bCFT, to AdSy JT gravity

lent dyn of bCFT = T grav + IbcFT

» Consequence of construction: Entanglement renormalization
in bCF T, described by Schwarzian QM

lscrr = lockr + % /{t, utdu



Other directions
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cMERA - Schwarzian
T T deformation of CFT
bCFT / SPT

de Sitter version
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Thank you!



