Entanglement, 2-dimensional gravity and tensor networks

Nele Callebaut

Ghent University, Verstraete group & Princeton University

Based on 1808.10431, with Herman Verlinde and 1808.05583

February 8, 2019

Outline

- ▶ Set-up: bCFT₂ on $ds^2 = -dt^2 + dx^2$, $x \ge 0$
- Goal: develop theory of entanglement dynamics
- Result: entanglement dynamics of bCFT₂ is described by JT gravity
- Entanglement renormalization in bCFT described by Schwarzian QM – connection to cMERA
- Example of 'geometry from entanglement'
- Future directions

CFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$ in vacuum state $|0\rangle$

bCFT $_2$ on $ds^2=-dt^2+dx^2=-dx^+dx^-$, $x\geq 0$ in state $|0\rangle$

bCFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$, $x \ge 0$ in state $|0\rangle$

bCFT₂ on
$$ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$$
, $x \ge 0$ in state $|0\rangle$

bCFT₂ on
$$ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$$
, $x \ge 0$ in state $|0\rangle$

point
$$P$$
 at (x_P^+, x_P^-)
 \sim interval

$$S_P = -\text{tr}(\rho_A \log \rho_A)$$

$$= \frac{c}{6} \log \frac{x_P}{\delta} = \frac{c}{6} \log \frac{x_P^+ - x_P^-}{2\delta}$$

$$= S_P(x_P^+, x_P^-)$$

bCFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$, $x \ge 0$ in state $|0\rangle$

point P at (x_P^+, x_P^-) \sim interval

$$S_P = -\operatorname{tr} \rho_A \log \rho_A$$

$$= \frac{c}{6} \log \frac{x_P}{\delta} = \frac{c}{6} \log \frac{x_P^+ - x_P^-}{2\delta}$$

$$= S_P(x_P^+, x_P^-)$$

local field
$$S_P(x_P^+, x_P^-) \Rightarrow \text{dynamics of } S_P$$
?

bCFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$, $x \ge 0$ in state $|0\rangle$

point P at (x^+, x^-) \sim interval

$$S = -\operatorname{tr}\rho_A \log \rho_A$$

$$= \frac{c}{6} \log \frac{x}{\delta} = \frac{c}{6} \log \frac{x^+ - x^-}{2\delta}$$

$$= S(x^+, x^-)$$

local field
$$S(x^+, x^-) \Rightarrow \text{dynamics of } S$$
?

Entanglement

$$S(x^+, x^-) = \frac{c}{6} \log \frac{x^+ - x^-}{2\delta}$$

obeys

$$\partial_+\partial_-\left(\frac{12}{c}S\right) = \frac{1}{2\delta^2}e^{-\frac{12}{c}S}$$

Goal: develop a field theory for the entanglement ("theory of entanglement dynamics") that reproduces this equation as an EOM *Inspiration from tensor networks*

Entanglement

$$S(x^+, x^-) = \frac{c}{6} \log \frac{x^+ - x^-}{2\delta}$$

obeys

$$\partial_+\partial_-\left(\frac{12}{c}S\right) = \frac{1}{2\delta^2}e^{-\frac{12}{c}S}$$

Goal: develop a field theory for the entanglement ("theory of entanglement dynamics") that reproduces this equation as an EOM *Inspiration from tensor networks*

$$S \rightsquigarrow (2D) \text{ metric } g$$

 \Rightarrow dynamics of entanglement = dynamics of (2D) geometry = (2D) gravity

Dilaton gravity

Einstein gravity

$$I[g,\phi_m] = \int dx dt \sqrt{g}(R+\Lambda) + I_m[g,\phi_m]$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu\nu}=0$.

Dilaton gravity

Einstein gravity

$$I[g,\phi_m] = \int dx dt \sqrt{g}(R+\Lambda) + I_m[g,\phi_m]$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu\nu}=0$.

Dilaton gravity

$$I[g, \Phi, \phi_m] = \int dx dt \sqrt{g} \left\{ \Phi R + V(\Phi) \right\} + I_m[g, \Phi, \phi_m]$$

Dilaton gravity

Einstein gravity

$$I[g,\phi_m] = \int dx dt \sqrt{g}(R+\Lambda) + I_m[g,\phi_m]$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu\nu}=0$.

Dilaton gravity

$$I[g, \Phi, \phi_m] = \int dx dt \sqrt{g} \left\{ \Phi R + V(\Phi) \right\} + I_m[g, \Phi, \phi_m]$$

Jackiw-Teitelboim (JT) dilaton gravity

$$I[g, \Phi, \phi_m] = \int dx dt \sqrt{g} \Phi(R + \Lambda) + I_m[g, \phi_m]$$

JT gravity and entanglement

$$I_{JT}[g, \Phi, \phi_m] = \int dx dt \sqrt{g} \Phi(R + \Lambda) + I_m[g, \phi_m]$$

The EOM following from variation wrt Φ is

$$R = -\Lambda$$
.

JT metric solution is always AdS₂!

$$ds^2 = \ell^2 \frac{(-dt^2 + dx^2)}{x^2}$$

JT gravity and entanglement

$$I_{JT}[g,\Phi,\phi_m] = \int dxdt \sqrt{g} \Phi(R+\Lambda) + I_m[g,\phi_m]$$

The EOM following from variation wrt Φ is

$$R = -\Lambda$$
.

JT metric solution is always AdS₂!

In conformal gauge $g_{\mu\nu}=e^{\omega(x^+,x^-)}\eta_{\mu\nu}$ (or $ds^2=-e^\omega dx^+dx^-$) and $\Lambda = \frac{2}{\ell^2}$

$$\partial_+\partial_-\omega+\frac{1}{2\ell^2}e^\omega=0.$$

$$\partial_+\partial_-\left(\frac{12}{c}S\right) = \frac{1}{2\delta^2}e^{-\frac{12}{c}S}$$

$$\omega = -\frac{12}{c}S + 2\log\frac{\ell}{\delta}$$

$$\omega = -\frac{12}{c}S + 2\log\frac{\ell}{\delta}$$

$$ds^2 = -\left(\frac{\ell}{\delta}\right)^2 e^{-\frac{12}{c}S(x^+, x^-)} dx^+ dx^-$$

JT entanglement dynamics of bCFT: metric

Part 1 of our JT entanglement dynamics theory: metric is AdS_2 determined by entanglement of the bCFT.

JT gravity and modular Hamiltonian

$$I_{JT}[g,\Phi,\phi_m] = \int dx dt \sqrt{g} \Phi(R+\Lambda) + I_m[g,\phi_m]$$

The EOM following from variation wrt $g_{\mu\nu}$ are

$$\begin{split} \partial_{+}\Phi\partial_{+}\omega - \partial_{+}^{2}\Phi &= 8\pi G T_{++}^{m} & (-\nabla_{+}^{2}\Phi = 8\pi G T_{++}^{m}) \\ \partial_{-}\Phi\partial_{-}\omega - \partial_{-}^{2}\Phi &= 8\pi G T_{--}^{m} & (-\nabla_{-}^{2}\Phi = 8\pi G T_{--}^{m}) \\ \partial_{+}\partial_{-}\Phi + \frac{\Lambda}{\Lambda}e^{\omega}\Phi &= 0 & (\Box\Phi - \Lambda\Phi = 0). \end{split}$$

What object in bCFT₂ obeys these EOM?

JT gravity and modular Hamiltonian

$$I_{JT}[g,\Phi,\phi_m] = \int dx dt \sqrt{g} \Phi(R+\Lambda) + I_m[g,\phi_m]$$

The EOM following from variation wrt $g_{\mu\nu}$ are

$$\partial_{+}\Phi\partial_{+}\omega - \partial_{+}^{2}\Phi = 8\pi G T_{++}^{m} \qquad (-\nabla_{+}^{2}\Phi = 8\pi G T_{++}^{m})$$

$$\partial_{-}\Phi\partial_{-}\omega - \partial_{-}^{2}\Phi = 8\pi G T_{--}^{m} \qquad (-\nabla_{-}^{2}\Phi = 8\pi G T_{--}^{m})$$

$$\partial_{+}\partial_{-}\Phi + \frac{\Lambda}{4}e^{\omega}\Phi = 0 \qquad (\Box\Phi - \Lambda\Phi = 0).$$

What object in bCFT₂ obeys these EOM?

Answer: modular Hamiltonian K

$$K \rightsquigarrow \text{dilaton } \Phi$$

bCFT
$$_2$$
 on $ds^2=-dt^2+dx^2=-dx^+dx^-$, $x\geq 0$ in state $|0\rangle$

point P at (x^+, x^-) \sim interval

$$K = -\log \rho_A$$
 (or $\rho_A = e^{-K}/\text{tr}(K)$)
= $2\pi \int_{x^-}^{x^+} ds \frac{(s - x^-)(x^+ - s)}{x^+ - x^-} T_{++}(s)$
= $K(x^+, x^-)$

bCFT
$$_2$$
 on $ds^2=-dt^2+dx^2=-dx^+dx^-$, $x\geq 0$ in state $|0\rangle$

local field $K(x^+, x^-) \Rightarrow \text{dynamics of } K$?

$$K = 2\pi \int_{x^{-}}^{x^{+}} ds \frac{(s - x^{-})(x^{+} - s)}{x^{+} - x^{-}} T_{++}(s)$$

obeys

$$\nabla_{+}\partial_{+}K = 2\pi T_{++}$$
$$\nabla_{-}\partial_{-}K = 2\pi T_{--}$$
$$(\Box - \Lambda)K = 0.$$

$$K = 2\pi \int_{x^{-}}^{x^{+}} ds \frac{(s - x^{-})(x^{+} - s)}{x^{+} - x^{-}} T_{++}(s)$$

obeys

$$\nabla_{+}\partial_{+}K = 2\pi T_{++}$$
$$\nabla_{-}\partial_{-}K = 2\pi T_{--}$$
$$(\Box - \Lambda)K = 0.$$

$$-\nabla_{+}\partial_{+}\Phi = 8\pi G T_{++}^{m}$$
$$-\nabla_{-}\partial_{-}\Phi = 8\pi G T_{--}^{m}$$
$$(\Box - \Lambda)\Phi = 0$$

$$\Phi = -4GK + \Phi_0$$
 and $T_{\pm\pm}^m = T_{\pm\pm}$

$$T_{\pm\pm}^m = T_{\pm\pm}$$

$$K = 2\pi \int_{x^{-}}^{x^{+}} ds \frac{(s - x^{-})(x^{+} - s)}{x^{+} - x^{-}} T_{++}(s)$$

obeys

$$\nabla_{+}\partial_{+}K = 2\pi T_{++}$$
$$\nabla_{-}\partial_{-}K = 2\pi T_{--}$$
$$(\Box - \Lambda)K = 0.$$

$$-\nabla_{+}\partial_{+}\Phi = 8\pi G T_{++}^{m}$$
$$-\nabla_{-}\partial_{-}\Phi = 8\pi G T_{--}^{m}$$
$$(\Box - \Lambda)\Phi = 0$$

$$\Phi = -4GK + \Phi_0$$
 and $T_{\pm\pm}^m = T_{\pm\pm}$

Part 2 and 3 of our JT entanglement dynamics theory: JT dilaton is determined by modular Hamiltonian of the bCFT, and JT matter sector by the bCFT matter.

JT entanglement dynamics of bCFT

$$I_{JT}[g,\Phi,\phi_m] = \int dx dt \sqrt{g} \Phi(R+\Lambda) + I_m[g,\phi_m]$$

$$I_{\mathsf{ent\ dyn\ of\ bCFT}}[S,K,\phi_m] = \int dx dt\, \sqrt{g}\, \Phi(R+\Lambda) + \int dx dt\, \sqrt{g} \mathcal{L}_{\mathit{bCFT}}$$

with

$$S \rightsquigarrow g$$
, $K \rightsquigarrow \Phi$, bCFT fields $\rightsquigarrow \phi_m$.

JT entanglement dynamics of bCFT

$$I_{JT}[g,\Phi,\phi_m] = \int dx dt \sqrt{g} \Phi(R+\Lambda) + I_m[g,\phi_m]$$

$$I_{\mathsf{ent\ dyn\ of\ bCFT}}[S,K,\phi_m] = \int dx dt\, \sqrt{g}\, \Phi(R+\Lambda) + \int dx dt\, \sqrt{g}\, \mathcal{L}_{\mathit{bCFT}}$$

with

$$S \leadsto g$$
, $K \leadsto \Phi$, bCFT fields $\leadsto \phi_m$.

Theory of entanglement dynamics obtained by coupling bCFT to AdS_2 JT gravity.

JT entanglement dynamics of bCFT

Given bCFT₂

$$ds^2 = -dt^2 + dx^2$$

Entanglement dynamics of bCFT₂

$$ds^2 = \frac{-dt^2 + dx^2}{x^2}$$

▶ bCFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$, $x \ge 0$ in state $|0\rangle$

- lacksquare bCFT $_2$ on $ds^2=-dt^2+dx^2=-dx^+dx^-$, $x\geq 0$ in state |0
 angle
- ▶ point $P(x^+, x^-)$ ~ interval ~ $S(x^+, x^-)$ and $K(x^+, x^-)$ that obey EOM of JT gravity with

$$\omega = -\frac{12}{c}S + 2\log\frac{\ell}{\delta}$$
$$\Phi = -4GK + \Phi_0$$

- ▶ bCFT $_2$ on $ds^2 = -dt^2 + dx^2 = -dx^+dx^-$, $x \ge 0$ in state $|0\rangle$
- ▶ point $P(x^+, x^-)$ ~ interval ~ $S(x^+, x^-)$ and $K(x^+, x^-)$ that obey EOM of JT gravity with

$$\omega = -\frac{12}{c}S + 2\log\frac{\ell}{\delta}$$
$$\Phi = -4GK + \Phi_0$$

 Theory of entanglement dynamics obtained by coupling bCFT₂ to AdS₂ JT gravity

$$I_{
m ent\ dyn\ of\ bCFT} = I_{JT,grav} + I_{bCFT}$$

- lacksquare bCFT $_2$ on $ds^2=-dt^2+dx^2=-dx^+dx^-$, $x\geq 0$ in state |0
 angle
- ▶ point $P(x^+, x^-)$ ~ interval ~ $S(x^+, x^-)$ and $K(x^+, x^-)$ that obey EOM of JT gravity with

$$\omega = -\frac{12}{c}S + 2\log\frac{\ell}{\delta}$$
$$\Phi = -4GK + \Phi_0$$

 Theory of entanglement dynamics obtained by coupling bCFT₂ to AdS₂ JT gravity

$$I_{
m ent\ dyn\ of\ bCFT} = I_{JT,grav} + I_{bCFT}$$

How general? For class of excited states in bCFT obtained by conformal transformations of the lightcone coordinates $X^{\pm}(x^{\pm})$.

Connection to tensor networks

- Construction coincides with definition of boundary kinematic space [Karch et al 1703.02990]
 Kinematic space / MERA [Czech et al]
- Construction allows description of entanglement renormalization in bCFT cfr MERA, cMERA [Vidal, Haegeman et al]

Entanglement renormalization 1

Entanglement interpretation of Φ_0 ?

$$\begin{split} \nabla_{\pm}\partial_{\pm}\Phi_0 &= 0 \\ -e^{\omega}\partial_{\pm}(e^{-\omega}\partial_{\pm}\Phi_0) &= 0 \end{split}$$

$$\Phi_0(x) \sim -\int^x dx' e^{\omega(x')} \sim -\partial_x \omega \sim \partial_x S = \frac{S(x) - S(x - \epsilon)}{-\epsilon}$$
$$-\Phi_0 = \frac{\Phi_b}{\epsilon} \frac{3}{c} \left(S(x) - S(x - \epsilon) \right)$$
$$-\frac{\Phi_0}{4G} = S(x) - S(x - \epsilon)$$

Entanglement renormalization 2

$$\frac{\Phi_0}{4G} = \frac{\Phi_b}{4G\epsilon} \frac{3}{\epsilon} (-\delta S_b)$$
 or $\frac{\Phi_0}{4G} = -\delta S_b$

with $\delta S_b = S(x) - S(x - \epsilon)$ the amount of entanglement between region left of P(x,t) and boundary layer of width ϵ

In the JT theory, the boundary condition

$$\Phi_0 = rac{\Phi_b}{\epsilon}$$

defines location of boundary $\{t(u), x(u)\}$ in $ds^2 = \frac{-dt^2 + dx^2}{x^2}$ with boundary time *u* such that

1)
$$ds^2|_b = -\frac{du^2}{\epsilon^2}$$

2) $\Phi|_b = \frac{\Phi_b}{\epsilon}$

2)
$$\Phi|_b = \frac{\Phi_b}{\epsilon}$$

In the JT theory, the boundary condition

$$\Phi_0 = \frac{\Phi_b}{\epsilon}$$

defines location of boundary $\{t(u), x(u)\}$ in $ds^2 = \frac{-dt^2 + dx^2}{x^2}$ with boundary time u such that

1)
$$ds^2|_b = -\frac{du^2}{\epsilon^2}$$

2) $\Phi|_b = \frac{\Phi_b}{\epsilon}$

- 1) Family of trajectories $\{t(u), \epsilon t'(u)\}$ $\iff \frac{-dt^2 + dx^2}{x^2} = -\frac{du^2}{\epsilon^2}$
- 2) t(u) as a function of matter content of JT theory determined by Schwarzian QM $\Leftarrow \Phi(x,t;T) = \frac{\Phi_b}{\epsilon}$ $\Phi(\epsilon t'(u),t(u);T) = \frac{\Phi_b}{\epsilon}$

$$\Phi_b \int \{t, u\} du + I_{CFT}$$

$$\{t,u\} = \frac{t'''}{t'} - \frac{3}{2} \left(\frac{t''}{t'}\right)^2$$

Entanglement renormalization 3

$$rac{\Phi_0}{4G} = rac{\Phi_b}{4G\,\epsilon}\,rac{3}{c}(-\delta S_b) \qquad ext{and} \qquad rac{\Phi_0}{4G} = -\delta S_b$$

$$\Phi_0 = \frac{\Phi_b}{\epsilon}$$
 corresponds to $\delta S_b = -\frac{c}{3}$

and

$$\Phi_b = \frac{c\epsilon}{3} \quad \Rightarrow \quad \frac{c\epsilon}{3} \int \{t, u\} du + I_{bCFT}$$

$$\left| I_{bCFT}^{\epsilon} = I_{bCFT}^{\epsilon \to 0} + \frac{c\epsilon}{3} \int \{t, u\} du \right|$$

Entanglement renormalization 4

Entanglement renormalization in given bCFT₂ similar to cMERA

$$ds^2 = -dt^2 + dx^2$$

Boundary dynamics in entanglement dynamics of bCFT $_2$ described by Schwarzian QM

$$ds^2 = \frac{-dt^2 + dx^2}{x^2}$$

Geometry from entanglement

Holographic argument

$$\begin{split} \delta \textit{M} = \textit{T} \delta \textit{S} & \text{gravitational first law in AdS}_3 \text{ gravity} \\ \delta \langle \textit{K} \rangle_\textit{CFT} = \delta \textit{S}_\textit{CFT} & \text{entanglement first law in CFT}_2 \end{split}$$

Jacobson argument (non-holographic)

$$\delta M = T \delta S + \delta E$$
 gravitational first law in AdS₃ gravity $0 = \delta \mathbf{S}_{CFT}|_V$ condition on entanglement in CFT₃

Current argument (non-holographic)

$$\begin{split} 0 &= T \delta S + \delta E &\quad \text{gravitational first law in AdS}_2 \text{ JT gravity} \\ 0 &= \frac{\delta \Phi}{4G} + \delta \langle K \rangle_{CFT} &\quad \text{condition on entanglement in CFT}_2 \end{split}$$

Summary

- ▶ bCFT₂ on $ds^2 = -dt^2 + dx^2 = -dx^+ dx^-$, $x \ge 0$ in state $|0\rangle_X$
- Theory of entanglement dynamics obtained by coupling bCFT₂ to AdS₂ JT gravity

$$I_{
m ent\ dyn\ of\ bCFT} = I_{JT,grav} + I_{bCFT}$$

 Consequence of construction: Entanglement renormalization in bCFT₂ described by Schwarzian QM

$$I_{bCFT}^{\epsilon} = I_{bCFT}^{\epsilon \to 0} + \frac{c\epsilon}{3} \int \{t, u\} du$$

Other directions

- cMERA Schwarzian
- $ightharpoonup T\bar{T}$ deformation of CFT
- ▶ bCFT / SPT
- de Sitter version
- **.** . . .

Other directions

- cMERA Schwarzian
- $ightharpoonup T\bar{T}$ deformation of CFT
- ▶ bCFT / SPT
- ▶ de Sitter version
- **.** . . .

Thank you!