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isometrydisentangler
two-body unitary gate

MERA as a quantum circuit:
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Ψ
ℒ # spins

Ψ → Ψ% → Ψ%% → ⋯
Wilson’s RG 

(for wavefunctions, 
in real space)

MERA as a coarse-graining transformation:
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In continuum:
conformal field theories

CFTs

MERA as a variational ansatz:

minimal distance
within the network

minimal # of cuts
within the networkgeometry?

entanglement 
entropycorrelations

Accurate representation of
ground states of

critical systems
! 0 ! # = 1

#&'( ) # = *
3 log (#/1)



AdS3/CFT2

Swingle 2009, 2012

MERA = Hyperbolic space H2 (time slice of AdS3)

MERA as (toy model for) holography & cosmology 

AdS/CFT correspondence, J. Maldacena, 1997 
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AdS3/CFT2

Swingle 2009, 2012MERA = hyperbolic space H2 (time slice of AdS3)

MERA as (toy model for) holography & cosmology 

why?
in hyperbolic 
space H" …

geodesics in #"

H"
in MERA…

correlations ∼ %&'()*+,-.

2

minimal 
cut

entanglement 
entropy ∼

3

1 MERA prepares CFT ground state
MERA extends in extra scale dimension 

H"

minimal 
surface 

CFT 
entanglement 

entropy 
(Ryu-Takayanagi)∼



light-space

light cone

L"

−$%" + $'" + $"" = 0

?

time-space

de Sitter
spacetime

dS"

−$%" + $'" + $"" = ,"?
Cedric Beny (2011), 
Czech, Lamprou, McCandlish, Sully (2015)
Kunkolienkar, Banerjee (2016), 
Bao, Cao, Carroll, Chatwin-Davies (2017)  

holography
cosmology

hyperbolic space

H"
space-space
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?
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MERA as (toy model for) AdS/CFT correspondence & cosmology 

MERA    =    H" or   dS" ? 

10 years of debate!

Ash Milsted
Perimeter postdoc

A. Milsted, G. Vidal arXiv:1807.02501
A. Milsted, G. Vidal arXiv:1805.12524

A. Milsted, G. Vidal arXiv:1812.00529

Spoiler:
MERA = L" light cone !

euclidean MERA = H" hyperbolic space !!

lorentzian MERA = dS" de Sitter spacetime !!!

tensor network    =  QFT path integral 
on curved spacetime
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given a tensor network…

metric !"#

• network symmetries

• path integral

…how do we assign a geometry to it?
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(1) translation invariance ! → ! + !.
'/0 ", ! = '/0(")

(2) reflection symmetry* ! → − !
'(, " = 0
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(3) scale invariance (", !) → ?(", !)
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Δ"66 between nearest neighbor tensors
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metric:

E → 0 light cone L%
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+E% hyperbolic space H%
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candidate metrics (by network symmetry):

!"+$
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The network symmetry cannot help us choose one.
How about the content of the tensors?

ℋ012

ℋ012

3:ℋ012 → ℋ012Linear map

〈7(*)|3|7′(*)〉 = =
>2?@A

BC DE-[G]

7(*)

7′(*)

MERA

I = = BC DE-[G]

Path integral on some geometry

≈
?conjecture:

layer of MERA
≈
?test:



Euclidean time evolution 

!"#$

euclideon!

lorentzion%

!"&'$
Lorentzian time evolution

(
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Δ(/0 = 2 34 !"56[8]

Euclidean path integral

:

)

*+())

*())

Δ:

flat
lorentzian
spacetime

/ = 2 34 !"&5[8]

Lorentzian path integral

flat 
euclidean
spacetime



Euclidean evolution versus Lorentzian evolution

!"#$ !"%&$

?!"#'( !"%&'(

euclideon
!

lorentzion
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Ψ+ → !"#'(|Ψ+⟩
positive 
weight

Ψ+ → !"%&'(|Ψ+⟩
complex 
phase



hyperbolic space

H"
space-space

−$%" + $'" + $"" = −)"

time-space

de Sitter
spacetime

dS"

−$%" + $'" + $"" = )"

light-space

light cone

L"

−$%" + $'" + $"" = 0

Ψ/ → 12345|Ψ/⟩
1238

strip of H"

linear 
map 

Ψ/ → 129:45|Ψ/⟩

129:8
strip of dS"

linear 
map 

Ψ/ → Ψ/
1% = ;linear 

map 

strip of L"



Outline

1) quantum circuit 

3) path integral

4) light cone

MERA tensor network

Tensor network as geometry

2) renormalization group

5) euclidean / lorentzian MERA

quantum information

condensed 

matter

holography

cosmology



So… what linear map is implemented by a layer of MERA?

quantum 
spin chain
! = 8

quantum 
spin chain
! = 16

There is a problem…



So… what linear map is implemented by a layer of MERA?

Ψ"#$%& → ( Ψ"#$%& = *
+
("+ Ψ+#$,
?

quantum 
spin chain
- = 8

quantum 
spin chain
- = 16

Ψ"#$%&
low energy basis 

Ψ"#$,
low energy basis 

A. Milsted, G. Vidal, PRB 2017, arXiv:1706.01436
Y. Zou, A. Milsted,  G. Vidal, PRL 2018, arXiv:1710.05397



quantum 
spin chain
! = 8

quantum 
spin chain
! = 16

Ψ'()*+ → -./0 Ψ'()1

Ψ'()*+ → -.230 Ψ'()1

• hyperbolic space?

• de Sitter spacetime?

• Light cone! Ψ'()*+ → -4 Ψ'()1

So… what linear map is implemented by a layer of MERA?

Ψ'()*+
low energy basis 

Ψ'()1
low energy basis 

A. Milsted, G. Vidal, PRB 2017, arXiv:1706.01436
Y. Zou, A. Milsted,  G. Vidal, PRL 2018, arXiv:1710.05397
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" Ψ# → |Ψ# ⟩ "MERA 
tensors

euclidean MERA lorentzian MERA

MERA

ground state 
tensor network

'( = *

Ψ# → '+,-.|Ψ#⟩lorentzions '+,/0
Ψ# → '+-.|Ψ#⟩euclideons '+10



CONCLUSION

euclidean MERA

lorentzian MERA

MERA

In the quest of assigning a
geometry to tensor networks…

…we have understood that MERA 
(and euclidean/lorenzian generalizations) 
represents a CFT path integral
on some curved spacetime

(simplest examples of a much
more general construction)

MERA = Holography? 
Maybe… (“MERA” is as holographic as a 
“2d path integral on a light cone geometry”)
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