Sydney Quantum Information Theory WorkshopCoogee Bay Hotel, SydneyFeb 8th 2019

MERA

Multi-scale entanglement renormalization ansatz Tensor network = sparse, efficient representation of many-body wavefunctions

G. Evenbly, Vidal, PRB 79 (14), 144108 (2009)

Glen Evenbly Georgia Tech

1) quantum circuit

2) renormalization group

94antum inform

Tensor network as geometry

3) path integral

holography

4) light cone

cosmology

5) euclidean / lorentzian MERA

Ash Milsted Perimeter Institute

Tensor network as geometry

3) path integral

holography

4) light cone

5) euclidean / Iorentzian MERA

MERA as a quantum circuit:

ground state $|\Psi\rangle = V |0\rangle^{\otimes N}$

MERA as a quantum circuit:

ground state $|\Psi\rangle = V |0\rangle^{\otimes N}$

MERA as a quantum circuit:

ground state $|\Psi\rangle = V |0\rangle^{\otimes N}$

MERA as a quantum circuit:

ground state
$$|\Psi
angle = V |0
angle^{\otimes N}$$

Tensor network as geometry

3) path integral

holography

4) light cone

cosmology

5) euclidean / lorentzian MERA

MERA as a coarse-graining transformation:

Wilson's **RG**

 $|\Psi\rangle \rightarrow |\Psi'\rangle \rightarrow |\Psi''\rangle \rightarrow \cdots$

(for wavefunctions, in real space)

1) quantum circuit

2) renormalization group

MERA as a variational ansatz:

correlations

$$\langle \phi(0)\phi(L)\rangle = \frac{1}{L^{2\Delta_{\phi}}}$$

Accurate representation of ground states of critical systems In continuum: conformal field theories CFTs

entanglement entropy

$$S(L) = \frac{c}{3}\log\left(L/\epsilon\right)$$

minimal distance within the network geometry? minimal # of cuts within the network

MERA as (toy model for) holography & cosmology

MERA as (toy model for) holography & cosmology

MERA as (toy model for) AdS/CFT correspondence & cosmology

10 years of debate!

MERA =
$$H_2$$
 or dS_2 ?

Ash Milsted Perimeter postdoc

A. Milsted, G. Vidal arXiv:1805.12524
A. Milsted, G. Vidal arXiv:1807.02501
A. Milsted, G. Vidal arXiv:1812.00529

tensor network = QFT path integral on curved spacetime

1) quantum circuit

2) renormalization group

Tensor network as geometry

...how do we assign a geometry to it?

given a tensor network...

- network symmetries
- path integral

(3) scale invariance $(z,r) \rightarrow \lambda(z,r)$

 $d_{\gamma} = d_{\gamma},$

 Δr_{nn} between nearest neighbor tensors at fixed z is proportional to z, $\Delta r_{nn}(z) \sim z$ Δz_{nn} between nearest neighbor tensors at fixed r is proportional to z, $\Delta z_{nn}(z) \sim z$ $g_{rr}(z)(\Delta r_{nn})^2 \sim g_{rr}(z)z^2 = \pm \mu^2$

$$\Rightarrow g_{rr}(z) = \pm \mu^2 / z^2$$

 $d_{\delta} = d_{\delta'}$

$$g_{zz}(z)(\Delta z_{nn})^2 \sim g_{rr}(z)z^2 = \pm v^2$$
$$\Rightarrow g_{zz}(z) = \pm v^2/z^2$$

metric:

$$ds^{2} = \frac{\pm R^{2}dz^{2} + dr^{2}}{z^{2}}$$

 $+R^2$ hyperbolic space H_2
 $-R^2$ de Sitter spacetime dS_2 $ds^2 = \frac{\pm d\eta^2 + dr^2}{(\eta/R)^2}$
time $\eta \equiv Rz$

candidate metrics (by network symmetry):

$$(ds_{H_2})^2 = \frac{+R^2 dz^2 + dr^2}{z^2} \qquad (ds_{L_2})^2 = \frac{dr^2}{z^2} \qquad (ds_{ds_2})^2 = \frac{-R^2 dz^2 + dr^2}{z^2}$$

The network symmetry cannot help us choose one. How about the content of the tensors?

Euclidean time evolution

Euclidean path integral

Lorentzian time evolution

Euclidean evolution versus Lorentzian evolution

1) quantum circuit

2) renormalization group

^{quantum} information

Tensor network as geometry

So... what linear map is implemented by a layer of MERA?

There is a problem...

N = 16

So... what linear map is implemented by a layer of MERA?

So... what linear map is implemented by a layer of MERA?

1) quantum circuit

2) renormalization group

Tensor network as geometry

3) path integral holography 4) light cone 5) euclidean / lorentzian MERA

CONCLUSION

In the quest of assigning a geometry to tensor networks...

...we have understood that MERA (and euclidean/lorenzian generalizations) represents a CFT path integral on some curved spacetime

(simplest examples of a much more general construction)

MERA = Holography?

Maybe... ("MERA" is as holographic as a "2d path integral on a light cone geometry")

THANKS!