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Motivation – Exact solutions for spin models
• Mapping to free-fermions is a workhorse 

method
• Mathematically elegant.
• Starting point for perturbation theory

• Rich connection to complexity
• Matchgate circuits [1-4]
• FKT algorithm [5-7]
• Sensitivity conjecture [8,9]

• Graph theory plays a central role. 
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Graphs of Hamiltonians

The anti-compatibility graph of a Hamiltonian has vertices corresponding to 
Pauli terms, which are neighboring if corresponding Paulis anticommute.

A graph 𝐺 = (𝑉, 𝐸) consists of sets  ቊ
𝑉
𝐸 ≡ 𝑖, 𝑗 𝑖, 𝑗 ∈ 𝑉}

vertices
edges



Anti-Compatibility Graphs – A “Game of Life”
Given a graph 𝐺 = (𝑉, 𝐸), for every edge 𝑣1, 𝑣2 ∈ 𝐸: 

1. Add a vertex whose neighbors are vertices neighboring exactly one of
either 𝑣1 or 𝑣2.

2. Do not add a vertex if there is already a vertex with the same neighbors.
3. Repeat until no more vertices can be added.



Anti-Compatibility Graphs – A “Game of Life”

Solvable Not Solvable

Somehow these graphs know the difference!



Free Fermions

Apply the Jordan-Wigner Transformation [10]

Consider the “solvable” case:

𝑍 𝑍 𝑍 𝑍 𝑌 𝐼 𝐼 𝐼 𝐼
x  𝑍 𝑍 𝑍 𝑍 𝑍 𝑋 𝐼 𝐼 𝐼

𝑐10
𝑐11

𝑖 𝐼 𝐼 𝐼 𝐼 𝑋 𝑋 𝐼 𝐼 𝐼 = 𝑐10𝑐11

Hamiltonian terms are quadratic in the Majorana operators

Canonical anticommutation relations

[10] P. Jordan and E. Wigner, Zeitschrift für Physik 47, 631 (1928).
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Free Fermions
Consider the “solvable” case:

Apply the Jordan-Wigner Transformation

Majorana operators transform covariantly

Can find spectrum and eigenvectors by diagonalizing 𝐡. 
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Another free-fermion solution: Kitaev Honeycomb Model

[11] A. Kitaev. Ann. Phys. 321, 2 (2006).

• Compass model on Honeycomb lattice.

• Bonds on cycles multiply to constants.

• For an 𝐿𝑥 x 𝐿𝑦 lattice, the effective 

Hilbert space contains 𝑂 𝐿𝑥𝐿𝑦 qubits 

in a mutual eigenspace of the cycles!

• A free-fermion mapping is needed to 
complete the solution. 



Another free-fermion solution: Kitaev Honeycomb Model

[11] A. Kitaev. Ann. Phys. 321, 2 (2006).

Map each qubit to four fermions

Bond fermions pair to constants of motion

with a new symmetry at each vertex 

Solve the “matter” fermion Hamiltonian over each bond sector. 
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When is a mapping to free fermions possible?

Given a general Pauli Hamiltonian

when can we define distinct quadratic fermion operators such that 
commutation relations are respected?  

such that

In graph theoretic terms: When can we label vertices of the anti-
compatibility graph by subsets of size at most 2, such that neighboring 
vertices’ subsets intersect in exactly one element? 



Line Graphs!

The line graph of a root graph, 𝑅 = (𝑉, 𝐸), is a graph 𝐿 𝑅 = (𝐸, 𝐹), 
whose vertices correspond to the edges of 𝑅 such that two vertices are 
neighboring in 𝐿(𝑅) if the corresponding edges in 𝑅 share a vertex.

Fundamental Theorem: There exists a free-fermion description of a 
Pauli Hamiltonian iff its anti-compatibility graph is a line graph.

Krausz (1943): A graph is a line graph iff there exists an edge partition 
into cliques (complete graphs) such that every vertex belongs to at 
most two cliques.

𝐿

[12] J. Krausz, Mat. Fiz. Lapok 50 (1943), 75-85



Proof Sketch
Theorem: Given the Pauli Hamiltonian

such that

an injective mapping

exists iff the anti-compatibility graph of 𝐻 is the line graph L(𝑅) for 
some root graph 𝑅. 

⇒ (definitions coincide)

⇐ If the anti-compatibility graph of 𝐻 is a line graph, associate a 
fermion to each clique in the Krausz decomposition, and give each Pauli 
the fermions corresponding to its cliques.   



Example – The Claw

Consider the path graph 𝑃3, whose line graph is 𝑃2

𝐿

Clearly, no matter how an edge is (or edges are) added to the interior 
vertices, a triangle is created. Adding an edge to the ends only elongates.

It is impossible for a line graph to contain a claw.

(𝐻𝑛𝑖𝑛𝑡)



Forbidden Subgraph Characterization – Beineke (1970)

A graph is a line graph iff no subset of its vertices induces one of the nine 
forbidden subgraphs below.

[13] L. W. Beineke, J. Comb. Theory, 9 (2): 129-135 (1970).

These nine anticommutation structures obstruct a free-fermion solution.



Isomorphism Theorems

Whitney (1932): Except for the triangle graph, 𝐾3, the root graph of any line graph 
is unique.

Jung (1966): If two connected graphs are edge-isomorphic with more than four 
vertices, then they are also vertex-isomorphic, and this vertex isomorphism is unique.

Degiorgi and Simon (1995) utilized these theorems to develop a dynamical algorithm 
to recognize line graphs in 𝑂 𝑛 time. Rossopoulos and Lehot (1973-1974) earlier 
gave non-dynamical algorithms to perform this recognition.

or

𝐿

[14] D.G. Degiorgi and K. Simon, Lecture Notes in Computer Science, 1017, Berlin: Springer 37-48 (1995). 

[15] N. D. Roussopoulos. Info. Proc. Lett., 2(4):108 – 112, 1973. P. G. H. Lehot. ACM, 21(4):569-575, 1974.
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Graphical Symmetries
Given the Pauli Hamiltonian

look for products that commute with every term in the Hamiltonian. 

The subsets 𝑆 arise as graphical structures:
(i) Twin vertices
(ii) Cycles in the root graph
(iii) Fermionic parity operator  

We solve the free-fermion model over each mutual eigenspace.



Twin vertices

If two vertices in the anti-compatibility graph have the same neighbors, 
then their product commutes with every term in the Hamiltonian. We 
can remove twins by fixing corresponding stabilizer values, e.g.

𝑌1𝑌2𝑌3𝑌4 = ±1

This can only be done for products of pairs of terms. 

𝑋1𝑋2𝑋3𝑋4 = ±1



Root-graph symmetries: cycles and parity

The adjacency matrix of a line graph 𝐿 𝑅 = 𝐸, 𝐹 with root 𝑅 = (𝑉, 𝐸)
can be factorized as

𝐀 = 𝐁𝐁T (mod 2)
𝐁 is the root graph incidence matrix

𝐵𝑖𝑗 = ቊ
1
0

if vertex 𝑗 ∈ 𝑉 belongs to edge 𝑖 in 𝐸
otherwise

Graphical symmetries are vectors 𝐯 ∈ 0, 1 ×|𝐸| in the kernel of 𝐀

𝐀 ⋅ 𝐯 = 𝟎 (mod 2)

We have two cases
(i) 𝐁T ⋅ 𝐯 = 𝟎 ⇒ 𝐯 is a subgraph of even degree (a cycle)

(ii) 𝐁 ⋅ (𝐁T ⋅ 𝐯) = 𝟎 ⇒ 𝐁T ⋅ 𝐯 = 𝟏, the all ones vector (fermionic parity operator)



What about the sign?
The sign of a term is changed by exchanging 𝑗1 ↔ 𝑗2 in the mapping 

This corresponds to an orientation of the root graph, but is not fixed by the 
commutation relations between the Paulis.

We choose this orientation when we fix the cycle-symmetry eigenvalues:
1. Choose a spanning tree of the root graph
2. Orient the edges on this tree arbitrarily

a) This cannot change the spectrum of 𝐡.
b) This changes the eigenvectors of 𝐡 by a diagonal ±1 single-particle 

matrix.
3. For each edge not in the spanning tree, choose orientation according to 

the sign of the unique corresponding independent cycle.



Putting Things Together

1. Check if the anti-compatibility graph is a line graph, possibly 
removing twins if necessary.

2. If a line graph, find the graphical symmetries
3. For each symmetry eigenvalue configuration, choose an 

orientation as described.
4. Solve the free-fermion Hamiltonian with the resulting single-

particle transition matrix, restricting onto a fixed-parity 
eigenspace if necessary.

Given a general Pauli Hamiltonian



General Nearest-Neighbor 1-d Model



Kitaev Honeycomb Model

• The anti-compatibility graph is the line graph of the honeycomb graph.
• Conserved bond operators keep track of the edge-orientation outside the 

spanning tree, but strictly speaking are more redundant than necessary.



Sierpinski-Hanoi Model

• Anti-compatibility graph describes allowed towers of Hanoi transitions

• Model encodes logical qubits at a constant asymptotic rate of 
11

18
.

Hamiltonian

Gauge



Future work - Free parafermions and circle graphs

• Joint work with Samuel Elman at University of Sydney.
• Parafermions satisfy twisted commutation relations

• “Free parafermion” models [16]

• Quadratics fail to commute if indices are interleaved

i.e. 𝛾𝑗𝛾𝑘
†, 𝛾𝑙𝛾𝑚

† ≠ 0 when 𝑗 < 𝑙 < 𝑘 < 𝑚

[16] P. Fendley, J. Phys. A 47 075001 (2014). 



Future work - Free parafermions and circle graphs
• Free parafermion models for 𝑑 = 3 are described by 

(oriented) circle graphs.

• Vertices of are chords on a circle, which are 
neighboring if the corresponding chords intersect.

• Forbidden subgraph characterization defined up          
to equivalence by local complementation [17].

• Line and circle graphs intersect, but do not properly 
contain one another.

• Though free parafermions lack nice Lie-theoretic 
properties, they still admit a graph theoretic 
characterization.

[17] A. Bouchet, J Combin. Theory Ser. B 60(1) (1994), 107–144. 



Outlook
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• We give a graph theoretic characterization of a 
wide class of fermion-solvable models.

• Cases where the solvability depends on 
Hamiltonian coefficients are still 
uncharacterized.

• Some applications for finding line subgraphs 
dynamically
• Quantum impurity models.
• Fermion-Gaussian “rank” for Hamiltonians.

Thanks!


