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The dramatic Tacoma Narrows bridge disaster of 1940 is still very much in the public eye today.
Notably, in many undergraduate physics texts the disaster is presented as an example of
elementary forced resonance of a mechanical oscillator, with the wind providing an external
periodic frequency that matched the natural structural frequency. This oversimplified
explanation has existed in numerous texts for a long time and continues to this day, with even
more detailed presentation in some new and updated texts. Engineers, on the other hand, have
studied the phenomenon over the past half-century, and their current understanding differs
fundamentally from the viewpoint expressed in most physics texts. In the present article the
engineers’ viewpoint is presented to the physics community to make it clear where substantial
disagreement exists. First it is pointed out that one misleading identification of forced resonance
arises from the notion that the periodic natural vortex shedding of the wind over the structure was
the source of the damaging external excitation. It is then demonstrated that the ultimate failure of
the bridge was in fact related to an aerodynamically induced condition of self-excitation or
“negative damping” in a torsional degree of freedom. The aeroelastic phenomenon involved was
an interactive one in which developed wind forces were strongly linked to structural motion. This
paper emphasizes the fact that, physically as well as mathematically, forced resonance and self-
excitation are fundamentally different phenomena. The paper closes with a quantitative
assessment of the Tacoma Narrows phenomenon that is in full agreement with the documented
action of both the bridge itself in its final moments and a full, dynamically scaled model of it

studied in the 1950s.

1. INTRODUCTION

The original Tacoma Narrows bridge, at all stages of its
short life, was indeed very active in the wind (Fig. 1). Its
failure on 7 November 1940 attracted wide attention at the
time and has elicited recurring references ever since, nota-
bly in undergraduate physics textbooks. The occasion for
this article is that the writers, who, in the course of aero-
elastic research, have studied the matter closely, believe
that many of the references are misleading to the reader in
regard to the phenomena that were manifested at Tacoma
Narrows. While the early engineering record itself was un-
clear and indecisive about the causative factors (see, for
example, several quotations in Ref. 1), evidence available
even early on>* but subsequently reexamined more close-
ly*® has allowed the record to be set quite straight. What is
currently offered, however, in explanation by certain text-
books to entering science and engineering students is, we
believe, much too casual and often incorrect, perhaps
traceable to misleading sources. The main issues in this
instance are: What was the exact nature of the wind-driven
occurrences at Tacoma Narrows, and, can they be consid-
ered correctly to be cases of resonance?

The occasion for this article occurred to one of us
(KYB), while browsing in the bookstore and examining
three currently used and popular textbooks.'®'? These in-
voke inferences about the Tacoma Narrows episode that
differ from present engineering understanding of the fail-
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ure. However, we also point out, below, areas of at least
partial agreement. Our aim is to set the record a bit
straighter than it now seems to be—at least as popularly
understood.

In several books, for example,'® where the elementary
concept of resonance is introduced and explained, the
bridge disaster, complete with the sensational photographs
of its failure, is cited as a pertinent example. We shall dis-
cuss a bit later to what extent it should—or should not—be
considered an appropriate example of resonance. An inter-
esting search through other introductory physics texts re-
vealed how widespread the use of this example is. For this,
five college libraries, two high-school libraries, and three
public libraries, as well as three campus bookstores and two
of the largest textbook-carrying stores in New York City
were searched. We thus also noted the ubiquitous presence
of the Tacoma Narrows bridge failure in numerous other
texts.'>*? In fact—in retrospect—it would have been of
interest to note particularly those few texts which did nor
cite the Tacoma Narrows incident as a case of resonance.

The list presented above consists of introductory college
physics texts used in the USA. While compiling this list, we
discovered that many related works have also made similar
identification of the failure. These include high-school
texts,*>*> books that are often classified as “‘physical sci-
ences,”*® more advanced texts in physics,*’ books for
popular circulation,**>* and the short article cited earlier
that accompanies a well-known film clip, now available as
a video tape.’
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Fig. 1. The original Tacoma Narrows bridge under the action of wind.?

II. TEXTBOOK ACCOUNT

Typically, resonance is first presented qualitatively along
these lines:

In general, whenever a system capable of oscillation is

acted on by a periodic series of impulses having a fre-

quency equal to or nearly equal to one of the natural

frequencies of oscillation of the system, the system is

set into oscillation with a relatively large amplitude.''

The Tacoma Narrows bridge disaster is then suggested
as an example of resonance:

(1) “...the central span [of the bridge] resonated un-
til the resonance became so great that it eventually caused
the bridge to collapse.”*’

(2) “..was destroyed by wind-generated reso-
nance.”*®

(3) “...Because of resonance, wind blowing over the
surface and support cables of the Tacoma Narrows bridge
generated a very large wave disturbance that destroyed the
bridge.”*®

(4) “The most famous incidence of resonance des-
troying a large structure was the collapse of the Tacoma
Narrows Bridge in 1940 under the driving force of the
wind.”*?

The final, catastrophic event at Tacoma Narrows did,
in fact, fit part of the above qualitative definition of reso-
nance—as we shall discuss—if the more penetrating ques-
tion of where the “periodic series of impulses’ came from is
temporarily set aside, for it was indeed a single torsional
mode of the bridge that was driven to destructive ampli-
tudes by the wind, as will be discussed at a later point.

However, if we seek a more quantitative description of
resonance in the common textbooks, the approach that is
taken is a discussion of the classic linear single-degree-of-
freedom oscillator defined by the well-known differential
equation:

mx + bx + kx = F cos w,t, ()

where, m, b, k are the mass, damping coefficient, and stiff-
ness, respectively, of a linear mechanical system of dis-
placement x, and , and F are the radian frequency and the
amplitude of an external exciting force, as a function of
time. For this well-known system, resonance (highest re-
sponse amplitude) occurs when the external forcing fre-
quency o, approaches the mechanical natural frequency

27fin the near vicinity of the value yk /m.
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After the above presentation, a representative com-

"ment like the following is usually made:

“The wind produced a fluctuating resultant force in
resonance with a natural frequency of the structure.
This caused a steady increase in amplitude until the
bridge was destroyed.”'®

We believe that interesting facts are lost, glossed over,
or misrepresented when texts are vague about just what the
exciting force was and just how it (being due basically to
the wind) acquired the necessary periodicity. Some texts
suggest that this force was supplied “by gale winds,”*® or
“gusts of wind,”*> etc. But “gusts” and ““gale” do not con-
note any well-defined periodicity. Seeking such periodicity
must lead to a closer investigation of the aerodynamics of
bluff bodies, which falls within the writers’ area of techni-
cal expertise. The so-called periodic vortex shedding®'->*
effect is a first, very tempting, candidate to which to at-
tribute the necessary periodicity.

Bluff bodies (such as bridge decks) in fluid streams do
in fact naturally shed periodic vortex wakes, tripped off by
body shape and viscosity, that are accompanied by alter-
nating pressures on the bodies, which oscillate in conse-
quence. Thus some authors,'®"? seeking a likely cause, as-
sumed that this observed effect must have provided the
necessary conditions that destroyed the bridge. Unfortu-
nately, this explanation is incorrect. We now know that
this is not what occurred at Tacoma Narrows. '

ITII. VORTEX-INDUCED VIBRATION

When fixed in a fluid stream, bluff (nonstreamlined)
bodies generate detached or separated flow over substan-
tial parts of their surfaces; that is, the flow lines do not
follow the contours of the body, but break away at some
points. At low Reynolds number, when separation first oc-
curs, the flow around the body remains steady. At some
critical Reynolds number two thin layers—often termed
the free shear layers—form to the lee of the body. These
unstable layers interact nonlinearly with each other in the
body wake to produce a regular periodic array of vortices
(concentrations of rotating fluid particles) termed the
Strouhal vortices. Such wakes were systematically investi-
gated for circular cylinders by Bénard.>*

These vortex arrays arrange themselves in two rows,
with opposite directions of circulation. Each vortex is lo-
cated opposite the midpoint of the interval between the two
closest vortices in the opposite row (Fig. 2). The beauty of
this “vortex street”—often termed the Karman vortex
street after the noted aerodynamist von Karman®*—has
long attracted attention, and popular articles®® often carry
pictures of it, emphasizing the “mystery” that exists in the
formation process. '

The frequency of the shedding vortices over a fixed (re-
strained) body is often termed the Strouhal frequency (f5)
and follows the relation:

SfsD/U=S. (2)
Here, U is the cross-flow velocity, D is the frontal dimen-
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Fig. 2. Typical streak line pattern of vortex trail behind a bluff body.
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sion, and S is the (nearly constant) Strouhal number ap-
propriate to the body in question. In the case of the original
Tacoma Narrows bridge the values of D and S are, respec-
tively, 8 ft and about 0.11.

When the periodic vortex shedding at frequency fg is
taken into account in the bridge context, an external peri-
odic agent is identified, and this periodic force is typically
misidentified as the source of the “resonant” frequency
that caused the bridge to fail.

(1) “The collapse was not due to the brute force of the
wind but due to a resonance between the natural frequency
of oscillation of the bridge and the frequency of wind-gen-
erated vortices that pushed and pulled alternately on the
bridge structure.” "'

(2) *“...vortices were pouring off the top and bottom of
the bridge, driving the bridge at its resonant frequency,
which eventually led to its collapse.”'?

(3) “Thus, vortex shedding allows us to understand the
origin of the fluctuating vertical forces on the Tacoma Nar-
rows Bridge... .3 ;

The assumption that the Strouhal frequency (fs)
matched a body natural mechanical frequency of the
bridge (i.e., fx =/f) is frequently made. If this had been
what happened during the destructive oscillation, Tacoma
Narrows would have been closer to an example of “‘reso-
nance”’; but even this requires discussion, as we point out
later. Mechanical vibration in the presence of the vortices
that are shed rhythmically under the resonant condition
fs =f is a well-observed phenomenon termed vortex-in-
duced vibration. In the Tacoma Narrows circumstance
some of the textbooks in question'®"? are in effect conclud-
ing that the bridge failed due to this sort of phenomenon. It
did not.

However, during its brief lifetime late in 1940 the bridge
did experience this sort of vibration, but safely, as it oc-
curred in purely vertical modes under relatively low-speed
winds. In fact, the slender bridge deck gained the sobriquet
“Galloping Gertie” from such oscillations, which took
place repeatedly, almost from opening day, 1 July 1940.
Motorists crossing the bridge sometimes experienced “roll-
er-coaster like” travel as they watched cars ahead almost
disappear vertically from sight, then reappear. Professor
Burt Farquharson of the University of Washington wit-
nessed all this, and it was reported that he did not believe,
early on, that the bridge was in danger of collapse. He had
begun wind-tunnel model experiments® that exhibited sim-
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model.?
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ilar relatively benign undulations. Figure 3 (after Farqu-
harson® ) depicts the oscillation amplitudes of a full wind-
tunnel model of the original Tacoma Narrows bridge. This
set of graphs “says it all” in regard to what happened with
that bridge. We will return to these results a little later on.

It has by now long since been demonstrated that from
the standpoint of phenomenology, even such vortex-in-
duced oscillations do not constitute a case of simple reso-
nance. The wind-structure interaction phenomenon asso-
ciated with natural vortex shedding has been found to be
very complex, involving both externally wind-initiated
forces and self-excitation forces that “lock on” to the mo-
tion of the structure. Far from a case of simple resonance,
this striking phenomenon of bluff-body fluid dynamics has
been—and continues to be—one of the more recondite
areas of the modern field of aeroelasticity. The various ex-
tant mathematical models for it (see Ref. 52 which lists
many of them) are not those of simple externally forced
resonance. One of the present writers (KYB) argues® that
the phenomenon is a nonlinear mode-coupling effect
between body and flow periodicities, leading to a form of
parametric excitation and subsequent amplitude saturation
due to nonlinearities coming into play at higher ampli-
tudes. While this line of mathematical modeling is peri-
pheral to our main argument, it does illustrate just how far
we are from a simple example of “resonance”—and how
misleading it can be for young students of science and engi-
neering to be given this example at a formative stage of
their scientific development.

During “lock-on” the wind forces excite the structure at
or near one of its resonant frequencies, but as its amplitude
increases this has the effect of modifying the local fluid
boundary conditions in a manner that instigates compen-
sating, self-limiting forces. These ultimately restrict the
structural motion to relatively benign amplitudes®® (see
also Fig. 3). The overall effect then resembles more a self-
limiting oscillation of Van der Pol type. Vortex-induced
vibration is clearly not a linear resonance even if the struc-
ture itself has linear properties, since the exciting force am-
plitude Fis a nonlinear function of the system response.

IV. THE DESTRUCTIVE MECHANISM AT THE
TACOMA NARROWS

The ultimate bridge failure at Tacoma Narrows, how-
ever, took place under a wholly different—and catastroph-
ic—set of circumstances (cf. Fig. 1). The wind speed at
that time, according to Farquharson,’ was 42 mph, and the
frequency he observed for the final destructive oscillation
was 12 ¢/m, or 0.2 Hz. At 42 mph, the frequency of natural
vortex shedding according to the Strouhal relation would
be close to | Hz, wholly out of synch with the actual cata-
strophic oscillation then going on. It can be concluded that
natural vortex shedding was not the cause of the collapse.
This rules out one type of periodic exciting force implied by
a few of our references.

Engineering interest in the problems of bridge stability
under wind, a very important matter for new designs, has
led to further exploration.>® Some of the earliest of these
explorations were already carried out by Farquharson,® at
the University of Washington, and by Karman and Dunn,’
at the California Institute of Technology, in the 1940s and
1950s. The final destructive, catastrophic instability was
also duplicated with a scaled bridge model by Scruton®’
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England and independently by Farquharson® at the Uni-
versity of Washington.

Referring to Fig. 3, one may observe that, in a full-bridge
1/50th scale Tacoma Narrows model several modes are
identified as responding with self-limiting amplitude—ex-
cept for one particular mode. This was a low torsional
modeidentified as “1-N7T 2nd” (with N = 1.44 Hz) which,
when the model frequency scaling factor of /50 is divided
out, defines a prototype frequency of 0.2 Hz, precisely the
frequency of the destructive mode identified at the site by
Farquharson.’ Under increasing wind velocity this mode
proceeds to ever-increasing amplitude.

In the early 1970s Scanlan and Tomko,* repeating some
of this work on a Tacoma Narrows section model, and car-
rying the work farther, demonstrated conclusively that the
catastrophic mode of the old Tacoma Narrows bridge was
a case of what they termed single-degree-of-freedom tor-
sional flutter due to complex, separated flow. To prevent
the discussion from degenerating here into mere semantics,
the research will be described in some detail.

Instead of characterizing the force that excited the sin-
gle-degree oscillator as a purely external function of time, it
was characterized as an aerodynamic self-excitation effect
that was able to impart a net negative damping characteris-
tic to the system. The important (and eventually destruc-
tive) torsional motion (quite distinct from the vertical
“roller coaster” motion) will be selected here for focus.
The torsional oscillator (bridge deck section) may be de-
scribed by

I[é+26,0,a+ota] = Fla,d), (3)

where I, {, o, are, respectively, associated inertia, damp-
ing ratio (274, = log dec), and natural frequency, and «
is the angle of twist. The aerodynamic force F(a, @) was
postulated in the linearly self-excited form

F(a,a) :A2a+A3a1 (4)
which, nondimensionally, became*
Fla,&) = pU*(2B?) [KA$(Ba/U) + KA ta], (5)

where p is air density, Uis wind velocity, B is deck width, o
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Fig. 4. Torsional damping flutter derivative,* original Tacoma Narrows
bridge deck cross section.
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model >*

is the circular frequency of oscillation, K = Bw/U, and 4 ¥,
A* are dimensionless aerodynamic (“flutter”) coeffi-
cients, functions of K. (4 ¥=0, a coefficient associated
elsewhere with vertical motion, is not pertinent to the pres-
ent discussion. ) It will be especially noted that no external
independent function of time is present in this formulation,
i.e., Eq. (3) is a homogeneous differential equation.
Experimental determination* of the coefficient 4 * re-
vealed it to have the form plotted in Fig. 4, wherein the
evolution of this damping coefficient with reduced velocity
(U/nB =2n7/K) exhibits a dramatic reversal in sign. It
was later found that Karman and Dunn®? had determined
and plotted a related Tacoma Narrows parameter, obtain-
ing the result shown in Fig. 5, which, however, included
both aerodynamic and mechanical damping effects. In this
figure § = 27(, is the logarithmic decrement and p is the
mass ratio pB ’g/w, o being bridge weight per foot. The
complexity of flow activity over the deck section as it oscil-
lates under the conditions described is suggested in Fig. 6.

Fig. 6. Vortex pattern over rotating deck section.
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When, for any reason, a body changes angle of attack ina
fluid stream, it sheds new vorticity into its wake. Thus its
motion is indeed associated with a vortex wake. But such a
motion-induced wake will have little or nothing to do with
a naturally developed Karman vortex trail. In fact, bluff
bodies in oscillatory motion shed wakes containing compo-
nents at both the oscillation and the Strouhal frequencies.
Under high amplitudes of oscillation it is the former that
predominate. The final, destructive oscillation of the old
Tacoma Narrows bridge produced a flutter wake, not a
Karman vortex street. This goes to the heart of a “chicken—
egg” dilemma: Did the vortices cause the motion or the
motion cause the vortices? In this case (flutter) it was the
latter.

This action, which finally brought the bridge down, oc-
curred in a fundamental antisymmetric torsion mode (see
Figs. 1 and 3), one which had not manifested itself in the
bridge response until some 45 min prior to the collapse—
basically a single-degree-driven unstable oscillation with
effectively negative damping representing an inflow of
wind energy caused by the synchrony of motion-induced
pressures with the motion itself. At the time, the wind ve-
locity (42 mph) was far in excess of that required for incip-
ient flutter. This is what happened on 7 November 1940 at
Tacoma Narrows. Details will be presented in Sec. VI.

Could this be called a resonant phenomenon? It would
appear not to contradict the qualitative definition of reso-
nance quoted earlier, if we now identify the source of the
periodic impulses as self-induced, the wind supplying the
power, and the motion supplying the power-tapping mech-
anism. If one wishes to argue, however, that it was a case of
externally forced linear resonance, the mathematical dis-
tinction between Eqgs. (1) and (3) is quite clear, self-excit-
ed systems differing strongly enough from ordinary linear
resonant ones. The texts we have consulted have not gone
this far in explanation.

V. FURTHER CONFUSIONS

Lee Edson added additional confusion to the old Taco-
ma Narrows story by some informal remarks he attributed,
in the first person, to von Karman in his biography. The
exact quotation (Ref. 58, p. 213) is

¢...the culprit in the Tacoma disaster was the Karman
Vortex Street.”

We believe this attribution fails to confront the “chicken—
egg”’ dilemma that we cited earlier. We see the flutter vor-
tex trail as a consequence, not a primary cause.

The von Karman biography (as well as Ref. 12)
further suggests that, von Karman’s explanation of the un-
derlying mechanism having gone to the heart of the matter,
engineers subsequently were able to solve the bridge insta-
bility problem. This also is not quite accurate. We now
know that von Karman’s explanation—at least as reported
by Edson—was off the mark. But having found experimen-
tally that the squat H section of the original Tacoma Nar-
rows bridge was highly unstable in flutter as we have de-
scribed, engineers (notably Farquharson® ) avoided it and
studied many other bridge section model forms empirically
in the wind tunnel, fixing finally upon a deep, open-truss
section, conductive both to higher torsional structural stiff-
ness and to aerodynamic stability, with which the Tacoma
Narrows bridge was then rebuilt. The fascinating details of
design® through which modern bridge decks, ail over the
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world, are rendered stable will not be entered into here.

The confusion about Tacoma Narrows—an extension
of much that surrounded it in earlier times—has apparent-
ly continued up to the present. The primary reason for all
this, we believe, is that many post facto accounts or investi-
gations were speculative or reviews of still other accounts.
Reference 1 cites some six of these, while itself neglecting
the underlying fluid-dynamic mechanism and treating the
bridge dynamics in an oversimplified manner, though these
authors cite Ref. 3 from which our Fig. 3 is taken) which
properly accounts for all effects. Wind-tunnel model stud-
ies, together with theoretical studies over many
years,>%%®! have led, we believe, to more penetrating in-
sights.

Another error accompanying many accounts®?®* has
been the confusion of the phenomenon of bridge flutter
with that of airplane wing flutter as though they were iden-
tical.®>**” Unless a bridge deck is highly streamlined as is
the case in some very modern decks, the eventual flutter
phenomenon that it will undergo is not akin to airfoil flut-
ter, but to a form of separated-flow flutter, which tends to
excite mainly the torsional degree of freedom. The intrinsic
underlying fact is that flow around highly streamlined bo-
dies (such as airfoils) satisfies the smooth-flow trailing
edge Kutta condition whereas flow around bluff bodies
(e.g., bridges) does not. There are several sources***® that
document the fact that bridge (bluff-body) flutter is practi-
cally not comparable to airfoil flutter.

The flutter aerodynamic forces on the airfoils of mod-
ern aircraft reach magnitudes comparable to their resisting
inertia and stiffness forces. As a resulit, flutter, when it oc-
curs for these structures, tends to be very precipitate.
Further, it represents an unstable coupling of fwo degrees
of freedom (bending and torsion) into a new (binary flut-
ter) mode, whereas each is otherwise found, individually,
to be positively damped. In the quite different case of the
heavy structure of bridges, the aerodynamic forces, under
wind flows that are low in speed compared to those of aero-
nautics, are relatively weaker and do not greatly influence
the responding modes—nor their frequencies.

They can and do influence the overall damping, how-
ever, reversing it in sign at the higher wind speeds. When
this occurs, even if two or more modes sometimes couple,
the principal driving mechanism is found to lodge in a sin-
gle unstable mode—usually torsion. With bridges, unstable
oscillation thus tends to grow more gradually in amplitude.
The old Tacoma Narrows bridge underwent some 45 min
of travail before its demise.

We note also that numerous instructional texts in
mathematics®® ¢ allude to the Tacoma Narrows incident,
and most of these, too, could be made more precise and
insightful in the light of current analyses of the problem.

VI. QUANTITATIVE ASSESSMENT OF THE OLD
TACOMA NARROWS WIND-EXCITED
PHENOMENA

In 1971 Scanian and Tomko,* employing a spring-sup-
ported wind-tunnel section model of the original Tacoma
Narrows bridge, developed the curve shown in Fig. 4 for
the A * torsional flutter derivative associated with the aero-
dynamic damping of that deck. The condition for flutter,
i.e., zero damping in a torsional mode (in this case, the
fundamental mode at 0.2 Hz) from Egs. (3) and (5) is

(A;‘)cril =21§a/pB4’ (6)
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where I = section mass moment of inertia about the center
of rotation; p = air density; B = deck width; and 27§,
= logarithmic decrement in the torsional mode. Data for
the original Tacoma Narrows case (represented first in the
engineering units of pounds, slugs, and feet used in the
original design study) are as follows: w = 2850 Ib/ft
=4249.1 kg/m; r=15 ft =4.573 m; g=32.2 fi/s’
=9.81 m/s; I=2(w/g)r* = 39829 slugs ft* /ft
=177 730 (kg)m?/m. Using

p = 0.002 378 slugs/ft* = 1.23 kg/m>;
B=139ft=11.89m;
it is found that

2(39 829 '
(AF) g = 25D _ 14457,
0.002 378(39)*

From Fig. 4 the following table of values can be calculat-
ed:

Table I. OTN flutter conditions as a function of mechanical damping.

Prototype velocity

é‘a (A Z*m( ) (U/"B)cril U:.-ri( (mph)
0.003 0.043 3.20 17.0
0.005 0.072 3.50 18.6
0.010 0.145 4.30 22.9
0.015 0.217 5.15 274
0.020 0.290 5.75 30.6

In comparison with this, Farquharson reported the fol-
lowing facts (cf. Fig. 3) from study of a full-bridge, 1:50
scale dynamic wind-tunnel model of the original Tacoma
Narrows bridge:

(a) The logarithmic decrement of the mode in question
was not known, but probably near to § =0.03 (i.e,
£, =0.005).

(b) Flutter in this mode, designated 1-N7, was incipient
at 3.3 ft/s in the model. This corresponds to a prototype
flutter speed of

This value compares quite reasonably to the (incipient)
critical speeds predicted above from the section model
study,* Table I.

In further corroboration of the incipient flutter speed,
Fig. 5 (from section model studies of Karman and Dunn?)
indicates that total damping is zero somewhere in the range

3.4<U/nB<S 1,

i.e., for the prototype bridge between 18 and 27 mph, which
again compares reasonably with the results of Table I.

The increase of response with wind speed, beyond the
incipient stage, toward higher amplitude flutter, which is
influenced by structure-induced turbulence and hence pro-
gressively changing values of 4 ¥, was witnessed in the full
model and is documented in Fig. 3. Therein the response
curve designated as 1-N7" (2nd) is the divergent flutter
response. The model frequency 1.44 Hz corresponds quite
closely to a prototype frequency of

N=n=1.44/50 = 0.20Hz = 12.2 cpm,
which is clearly the destructive frequency observed and
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reported by Farquharson® at the bridge site just prior to the
bridge collapse. The ever-increasing response of mode 1-
NTis seen in Fig. 3 to approach “divergent” amplitudes at
a model velocity of around 5 ft/s which corresponds to a
full-scale speed of about 35 mph. The actual prototype
steady wind at the time of collapse was of course in excess
of this value (42 mph).

In summary, Fig. 3, together with the separate examina-
tions culminating in Figs. 4 and 5, quite accurately charac-
terize the critical torsional oscillations of the Old Tacoma
Narrows bridge. In contrast, the relatively benign and self-
limiting amplitudes of vertical oscillation are all also clear-
ly indicated in Fig. 3. This figure and Fig. 5 have been
available since 1952, and Fig. 4 since 1971. No “puzzle” or
“mystery”’ is involved here.

VII. CLOSING REMARKS

It appears to us that the accounts given in many physics
as well as elementary mathematics texts are not likely to
have been based on penetrating investigations of the Taco-
ma Narrows phenomena discussed in this paper. Many
noninvestigative approaches to the Tacoma Narrows
events have developed a wide range of rather loose descrip-
tions, explanations, and speculations over the last half-cen-
tury. As we have pointed out, however, good physical evi-
dence is available in the literature corroborating the
underlying mechanisms of the Tacoma Narrows events as
presently understood.

The Tacoma Narrows incident will remain a celebrated
example because of its spectacular nature and the freak
recording of the disaster by witnessing photographers. The
sensational photographs have made it an irresistible peda-
gogical example—and indeed, much is to be learned from
it. Because it lodges itself so easily in the memory, it is
doubly important for educators to draw the correct lessons
from this classic and sensational event. While it is under-
standable how so many textbooks have, over the years,
oversimplified the physics involved, it is probably time—
given the more advanced state of present knowledge—to
offer the next generation of students subtler, more com-
plex, and correct explanations. In the engineering world
proper interpretation of the aeroelastic events at Tacoma
Narrows has influenced the designs of all the world’s great
long-span bridges built since that time.

'R. G. Fuller, D. A. Zollman, and T. C. Campbell, The Puzzle of the
Tacoma Narrows Bridge Collapse (Wiley, New York, 1982) (article);
American Association of Physics Teachers, 5112 Berwyn Rd., College
Park, MD 20740 (video tape).

20. H. Ammann, T. Von Karman, and G. B. Woodruff, “The failure of
the Tacoma Narrows bridge,” Report to the Federal Works Agency, 28
March 1941.

* Aerodynamic Stability of Suspension Bridges, edited by F. B. Farquhar-
son, University of Washington Engineering Experimental Stations Bul-
letin, No. 116, Pts. 1-5, June 1949-June 1954.

*R. H. Scanlan and J. J. Tomko, “Airfoil and bridge deck flutter deriva-
tives,” J. Eng. Mech. 97, 1717-1737 (1971).

*R. H. Scanlan, “On the state of stability considerations for suspended
span bridges under wind,” Proc. IUTAM-IAHR Symposium, Karls-
rube, Germany, Paper F1, pp. 595-618 (1979).

°R. H. Scanlan, “Developments in low-speed aeroelasticity in the civil
engineering field,” J. Am. Inst. Aeronaut. Astronaut. 20, 839-844
(1982). '

?Committee on Wind Effects, American Society of Civil Engineers,
“Wind loading and wind-induced structural response—A state-of-the-
art report,” ASCE, New York (1987).

K. Y. Billah and R. H. Scanlan 123



$E. H. Simiu and R. H. Scanlan, Wind Effects on Structures (Wiley, New
York, 1986), 2nd ed.

9J.-G. Beliveau, R. Vaicaitis, and M. Shinozuka, “Motion of suspension
bridges subject to wind loads,” J. Struct. Div. ASCE 103, 1189-1205
(1977).

“R. Resnick and D. Halliday, Physics—Part I (Wiley, New York, 1977).

"'D. Halliday and R. Resnick, Fundamentals of Physics (Wiley, New
York, 1988), 3rd ed.

128. T. Frautschi, R. P. Olenick, T. M. Apostol, and D. L. Goodstein, The
Mechanical Universe—Mechanics and Heat, Advanced Edition (Cam-
bridge U.P., Cambridge, England, 1986).

IR. A. Serway, Physics for Scientists and Engineers (Saunders College
Publishing, Philadelphia, 1990), 3rd ed.

" C. Kittel, W. D. Knight, and M. A. Ruderman, Mechanics, Berkeley
Physics Course (McGraw-Hill, New York, 1973), 2nd ed., Vol. 1, see p.
412.

'*R. D. Rusk, Introduction to College Physics ( Appleton-Century-Crofts,
New York, 1954). }

'*W. E. Gettys, F. J. Keller, and M. J. Skove, Physics (McGraw-Hill,
New York, 1989).

'7]. D. Wilson, Physics—A Practical and Conceptual Approach (Saunders
College Publishing, Philadelphia, 1989).

"® A. Van Heuvelen, Physics—A General Introduction (Little, Brown,
Boston, 1986), 2nd ed.

'"R. Wolfson and J. M. Pasachoff, Physics (Little, Brown, Boston, 1987).

2T, P. Snow and J. M. Shull, Physics (West, St. Paul, MN, 1986).

2'D. C. Giancoli, The Idea of Physics (Harcourt, Brace, Jovanovich, San
Diego, 1986), 3rd ed.

2J. B. Marion and W. F. Hornyak, General Physics with Bioscience Essays
(Wiley, New York, 1985), 2nd ed.

2*G. L. Buckwalter and D. M. Riban, College Physics (McGraw-Hill,
New York, 1987).

2R. W. Heath, R. R. Macnaughton, and D. G. Martindale, Fundamen-
tals of Physics (Heath, Canada, 1985).

2 D. C. Giancoli, General Physics (Prentice-Hall, Englewood Cliffs, NJ,
1984).

2*R. T. Dixon, The Dynamic World of Physics (Merrill, Columbus, OH,
1984).

27R. A. Serway and J. S. Faughn, College Physics (Saunders College Pub-
lishing, Philadelphia, 1985).

*¥1. M. Freeman, Physics—Principles and Insights (McGraw-Hill, New
York, 1973).

*R. L. Weber, K. V. Manning, M. W. White, and G. A. Weygand, Col-
lege Physics (McGraw-Hill, New York, 1974), 5th ed.

M. C. Martin and C. A. Hewett, Elements of Classical Physics (Perga-
mon, New York, 1975).

*'D. Halliday and R. Resnick, Fundamentals of Physics (Wiley, New
York, 1986), 2nd ed.

2 P. G. Hewitt, Conceptual Physics—A New Introduction to Your Envi-
ronment (Little, Brown, Boston, 1974).

3J. W. Kane and M. M. Sternheim, Life Science Physics (Wiley, New
York, 1978).

S, A. Marantz, Physics (Benziger, New York, 1969).

*3F. M. Miller, College Physics (Harcourt, Brace, Jovanovich, New York,
1977), 4th ed.

*W. W. McCormick, Fundamentals of University Physics (Macmillan,
New York, 1969).

*R. Stevenson and R. B. Moore, Theory of Physics (Saunders, Philadel-
phia, 1967).

#D. M. Burns and S. G. G. Macdonald, Physics for Biology and Pre-
Medical Students (Addison-Wesley, Reading, MA, 1975).

¥ C. E. Swartz, Phenomenal Physics (Wiley, New York, 1981).

4G. F. Wheeler and L. D. Kirkpatrick, Physics, Building a World View
(Prentice-Hall, Englewood Cliffs, NJ, 1983).

4], W. Kane and M. M. Sternheim, Physics (Wiley, New York, 1988),
3rd ed.

“2 A. Hudson and R. Nelson, University Physics (Saunders College Pub-
lishing, Philadelphia, 1990), 2nd ed.

43P. G. Hewitt, Physics—A High School Physics Program (Addison-Wes-
ley, Reading, MA, 1987).

124 Am. J. Phys., Vol. 59, No. 2, February 1991

*A. T. Taffel, Physics—Its Methods and Meaning (Allyn and Bacon,
Newton, MA, 1986).

“R. 1. Hulsizer and D. Lazarus, The World of Physics (Addison-Wesley,
Reading, MA, 1972).

M. Merken, Physical Science with Modern Applications (Saunders Col-
lege Publishing, Philadelphia, PA, 1972).

47R. L. Armstrong and J. D. King, Mechanics, Waves, and Thermal Phys-
ics (Prentice-Hall, Englewood Cliffs, NJ, 1970).

“*W. Bolton, Patterns in Physics (McGraw-Hill, London, 1986).

4J. Walker, The Flying Circus of Physics (Wiley, New York, 1975).

K. C. Cole, Sympathetic Vibrations—Reflections on Physics as a Way of
Life (Morrow, New York, 1985).

5'G. Birkhoff and E. H. Zarantonello, Jets, Wakes and Cavities (Aca-
demic, New York, 1957).

2K. Y. R. Billah, “‘A study of vortex-induced vibration,” Doctoral Dis-
sertation, Princeton University (1989).

*H. Bénard, “Formation de centres de giration a P'arriére d’un obstacle
en mouvement,” C. R. Acad. Sci. Paris 147, 839-842 (1908).

**W. R. Sears, “Von Karman: Fluid dynamics and other things,” Phys.
Today 39(1), 34-39 (1986).

*D. A. Bramley, “Physics: Natural philosophy and invention,” Am. Sci.
74, 622-639 (1986).

%K. Y. R. Billah and R. H. Scanlan, “Vortex-induced vibration and its
mathematical modeling: A bibliography,” Report SM-89-1, Dept. of
Civil Engineering, Princeton University (1989). This report includes a
list of about 40 experimental studies on self-limiting vortex-induced
response.

S7C. Scruton, “Experimental investigation of aerodynamic stability of
suspension bridge with special reference to Severn bridge,” Proc. 5th
Civil Engineering Conference, London, Vol. 1, Pt. 1, No. 2, pp. 189-222
(March 1952).

8T, Von Karman with L. Edson, The Wind and Beyond (Little, Brown,
Boston, 1967).

**F. B. Farquharson, “Lessons in bridge design taught by aerodynamic
studies,” Proc. Am. Soc. Civil Eng. 16, 344 (1946).

°“D. R. Huston, “The effect of upstream gusting on the aeroelastic behav-
ior of long-suspended span bridges,” Doctoral Dissertation, Princeton
University (1980).

¢'R. H. Scanlan, “The action of flexible bridges under wind, I: Flutter
theory,” J. Sound Vib. 60, 187-199 (1977).

©2Y. Rocard, Dynamic Instability (Crosby Lockwood, London, 1957).

**M. Roseau, Vibrations in Mechanical Systems (Springer-Verlag, Berlin,
1987).

*F. Bleich, “Dynamic instability of truss-stiffened suspension bridges
under wind action,” Proc. Am. Soc. Civil Eng. 74, 1269-1314 (1948).

% R. H. Scanlan and R. Rosenbaum, Aircraft Vibration and Flutter (Mac-
millan, New York, 1951).

**H. W. Forsching, Fundamentals of Aeroelasticity (in German) (Spring-
er-Verlag, Berlin, 1974).

S7E. H. Dowell, R. H. Scanlan, H. C. Curtis, and F. Sisto, 4 Modern
Course in Aeroelasticity (Sijthoff and Noordhoft, Alphen aan dem Rijn,
Netherlands, 1980).

**D. A. Sanchez, R. C. Allen, and W. T. Kyner, Differential Equations
(Addison-Wesley, Reading, MA, 1988).

% W. R. Derrick and S. I. Grossman, Introduction to Differential Equa-
tions (West, St. Paul, MN, 1987).

M. Braun, Differential Equations and their Applications, Applied Math-
ematical Series 15 (Springer-Verlag, New York, 1978), 2nd ed.

"' G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge
Press, Wellesley, MA, 1986).

21.8. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Mod-
ern Engineering (McGraw-Hill, New York, 1966), 2nd ed.

*I. D. Hintley and R. M. Johnson, Linear and Nonlinear Differential
Eguations (Ellis Horwood, Chichester, U.I_(., 1983).

4V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equa-
tions with Periodic Coefficients (Wiley, New York, 1975), Vol. 2.

75V. P. O’Neil, Advanced Engineering Mathematics (Wadsworth, Bel-
mont, CA, 1983).

7D, G. Zill, Course in Differential Equations with Applications (Prindle,
Weber and Schmidt, Boston, 1982), 2nd ed.

K. Y. Billah and R. H. Scanlan 124



