Mathematical Chaos and Strange Attractors

“Moreover, it seemed that some unexpected “‘universal’” features of the
ransition into chaos had recently been unearthed, features that depended
Solely on the presence of feedback and that were virtually insensitive to
ther details of the system. This generality was important, because any
mathematical model featuring a gradual approach to chaotic behavior might
_provide a key insight into the onset of turbulence in all kinds of physical
ystems.; ] {Turbulence, in contrast to most phenomena successfully under-
tood in @Em_nm is a noniinear phenomenon; two solutions to the equations
of .turbulence do not add up to a new solution. Nonlinear mathematical
_phenomena are much less well understood than linear ones, which is why
‘good mathematical description of turbulence has eluded physicists for a
ong time, and would be a fundamental breakthrough.

'When I later began to read about these ideas, I found out that they had
ctually grown out of many disciplines simultaneously. Pure mathematicians
1ad begun studying the iteration of nonlinear systems by using computers.
Theoretical meteorologists and population geneticists, as well as theoretical
shysicists studying such diverse things as fluids, lasers, and planetary orbits,
ad independently come up with similar nonlinear mathematical models
eaturing chaos-pregnant feedback loops and had studied their properties,
ach group finding some quirks that the others had not found. Moreover,
“not only theorists but also experimentalists from these widely separated
isciplines had simultaneously observed chaotic phenomena vaﬁnwrmﬂw
ertain basic patterns.I soon saw that the simplicity of the cnmmlﬁnm ideas
gives them an elegance that, in my opinion, rivals that of some of the best
if «classical mathematics. Indeed, there is an eighteenth- or nineteenth-
entury flavor to some of this work that is refreshingly concrete in this era
»f staggering abstraction.

Probably the main reason these ideas are only now being discovered is
hat the style of exploration is entirely modern: it is a kind of experimental
mathematics, in which the digital computer plays the role of Magellan's ship,
he astronomer’s telescope, and the physicist’s accelerator. Just as ships,
lescopes, and accelerators must be ever larger, more powerful, and more
xpensive in order to probe ever more hidden regions of nature, so one
would need computers of ever greater size, speed, and accuracy in order to
explore the remoter regions of mathematical space. By the same token, just
asithere was a golden era of exploration by ship and of discoveries made
with telescopes and accelerators, characterized by a peak in the ratio of new
ecrets uncovered to money spent, so one would expect there to be a golden
ra in the experimental mathematics of these models of chaos. Perhaps this
ra has already occurred, or perhaps it is occurring right now. And perhaps
after it, we will witness a flurry of theoretical work to back up these
perimental discoveries.

In any case, it is a curious and delightful brand of mathematics that is
being done. This way of doing mathematics builds powerful visual imagery
and intuitions directly into one’s understanding. The power of computers
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You can’t know how happy I am that we met,
I'm strangely attracted io you,

—~Cotle Porter, "It’s All Right with Me”

few months ago, while walking through the corridors of the physics
aﬂumﬁﬁmi of the University of Q:nmmo with a friend, I spotted a poster
announcing an international symposium titled “Strange Attractors”. My eye
could not help but be strangely attracted by this odd term, and I asked my
friend what it was all about. He said it was a hot topic in theoretical physics
these days. As he described it to me, it sounded quite wonderful and
mysierious.

I gathered that the basic idea hinges on looking at what might be called
“mathematical feedback loops™: expressions whose output can be fed back
into them as new input, the way a loudspeaker’s sounds can cycle back into
2 microphone and come out again. From the simplest of such loops, it
seemed, both stable patterns and chaotic patterns (if this is not a
contradiction in terms!) could emerge. The difference was merely in the
value of a single parameter.'Very small changes in the value of this
parameter could make all the difference in the world as to the orderliness
of the behavior of the loopy system. This image of order melting smoothly
into chaos, of pattern dissolving gradually into randomness, was exciting to
me. .
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allows one to bypass the traditional “theorem-proof-theorem-proof” brand
of mathematics, and to arrive quickly at empirical observations and |
discoveries that reinforce each other, and that form a rich and coherent :
network of results. In the long run, it may turn out to be easier to find proofs
of these results (if proofs are still desired), thanks to the careful and
 thorough exploration of the conceptual territory in advance. It's an upstart’s
way of deing mathemaitics, and not all mathematicians approve.

One of the strongest proponents of this style of mathematizing has been
Stanislaw M. Ulam, who, when computers were still young, turned them
loose on problems of nonlinear iteration as well as on problems from many |
other branches of mathematics. It is from Ulam’s early studies with Paul
Stein that many of the ideas to be sketched here follow.

So much for romance. Let us work our way up to the concept of “strange
attractors”’ by beginning with the more basic concept of an attractor. This
whole field is founded on one concept: the iteration of a real-valued
mathematical function—that is, the behavior of the sequence of values x,:
JEL N, FUGFED, - .., where f is some interesting function. The initial
value of x is called the seed. The idea is to feed f’s cutput back into fas new:
input over and over again, to see if some kind of pattern emerges.

An interesting and not too difficult problem concerning the iteration of
a function is this: Can you invent a function p with the property that for any
real value of x, p(x) is also real, and where p(p(x)) equals —x? The condition
that pfx) be real is what gives the problem a twist; otherwise the function
plx) = ix (where i is the square root of — 1) would work. In fact, you can
even think of the challenge as that of finding a real-valued “square root of
the minus sign”. A related problem is to find a real-valued function g, whose

" property is that ¢(g{x)) =1 /x for all x other than zero. Note that no matter
how you construct p and ¢, each will have the property that, given any seed
repeated iteration creates a cycle of length four.

Now, more generally, what kinds of functions, when repeatedly iterated,
are likely to exhibit interesting cyclic or near-cyclic behavior? A simple
function such as 3x or x°, when iterated, does not do anything like that. The
nth iteration of 3x, for example, is 3X3X3X ... X3, with n 3’s—that is,
3"x—and the nth iteration of x* is just (((¢*)*)%)- % with n 3's again, which
amounts to x>, Nothing cycle-like here; the values Just keep going up and
up and up. To reverse this trend, one needs a function with some sort of
switchback—a little zigzag or twist. A more technical way of putting it is that
one needs a nonmonotonic function: a function whose graph is folded—that
s, it starts moving one way—say upward—and then bends back the other
way—say downward,

(a)

td

(b)

URE 16-1. Two nonmongtonic, or *folded”, functions in the unit square. In (a), a sharp
“and in (b), a parabola. The maximum height of both is defined by the parameter M.
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In Figure 16-1g, we have a sawtooth with a sharp point at its top, and in
Figure 16-15, 2 smoothly bending parabolic arc. Each of them rises from the
origin, eventually reaches a peak height called A, and then comes back down
for alanding on the far side of the interval. Of course there are uncountably
many shapes that rise to height A and then come back down, but these two |
are among the simplest. And of the two, the parabola is perhaps the simpler,
or at least the more mathematically appealing. Its equation is y =4Ax (1 —x),
with A not exceeding L.

We allow input (values of x) only between 0 and 1. As the graph shows,
for any x in that interval, the output (y) always is between 0 and A. Therefore
the output value can always be fed back into the function as input, which’
ensures that repeated iteration will always be possible. When you repeatedly
iterate a “folded” function like this, the successive y-values you produce will
sometimes go up and sometimes down—always hovering, of course,.
between 0 and A, The fold in the graph guarantees interesting effects when
the function is iterated—as we shall see.

It turns out that the spectacular differences in the degree of regularity o
patterns I mentioned above are due to variations in the setting of what we
might call the “A-knob”. Depending on the value the knob is set at, the
function yields an incredible variety of “orbits”——that is, sequences x, f(x)
F(f@x)), and so on. In particular, for A below a certain critical value;
1, =0.892486417967 ..., the orbits are all regular and patterned (although
there are various degrees of patiernedness; generally the lower A is, the:
more simply the orbit is patterned), but for A at or beyond this critical value
hold onto your hat! An essentially chaotic sequence of values will be trace
out by the values x, f(x), F(f(x)), ..., no matter what positive seed value o
x you choose. In the case of the parabola, the critical role played by varying.

the M-knob seems to have been first realized by P. J. Myrberg in the early.
196(’s, but his work was published in 2 little-known journal and did not
artract much attention. Some ten years later, Nicholas C. Metropols, Paul
Stein, and Myron Stein rediscovered the importance of the knob not onl
for the parabola but alsc for many other functions. Indeed, they discovered
that as far 2s certain topological properties were concerned, the function did
not matter—only the value of A did. This property has come to be called

LX)

“structural universality”.

RE16-2.  The parabola defined by “A-knob” setting of 0.7. An initial X-value of about
sed as a “'seed” for iteration, and the pathway taken is shown. Eventually it settles down
2 point, denoted by x".

zero. value as x”. By construction, then, f{(x*} equals x*, and repeated
-of £ at this x-value will get you into an infinite loop. The same
s:f you start iterating at x=0: you get stuck in an endless loop.
T,-there is a significant difference between these two fixed points of
1s best indicated by taking some other initial value of x, say one close
4, as 1s shown in the same figure. Call this starting x-value x,,. There
egant graphical way to generate the orbit of any seed x,,. A vertical
lue x, will hit the eurve at height y,=/(x,). To iterate £, we must
ew vertical line located at the new x-value equal to this y-value. This
e the 45-degree line y =x comes in handy. Staying at height y,, we
move over horizontally unul we hit that 45-degree line. Then, since
this line y equals x, both x and y equal y,. Let us call this new x-value
ow draw a second vertical line. This one will hit the curve at height

(yo)=F(fx,)). Now we just repeat.

In order to see how such a nonintuitive dependence on the setting of the
A-knob comes about, one must develop a visual sense for the process o
iterating f(x). This is readily done. Suppose we set A to 0.7. The graph of
[(x) appears in Figure 16-2. In addition, the line y =x appears as a 45-degree
broken line. (This graph and most of the others in this article were produce
on a small computer by Mitchell J. Feigenbaum of the Los Alamos National
T abkaratary )
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In brief, iteration is realized graphically by a simple recipe:

(
2

Repeat steps (1) and

The results of this procedure with seed x,=

1) Move vertically until you hit the curve;

then

)

Move horizontally until you hit the diagonal line
{2) over and over again.

] k3

round and

0.04 are also shown in Figure

-coordinate are x°,

round the point whose
Gradually we close down on that

16-2. We are led in a merry chase
x-coordinate and y
point. Thus " is a special kind of fixed point, because it attracts iterated
values of f{x}. It is the simplest example of an altractor: every possible seed
(except O} is drawn, through iteration of f, te this stable x-value, This x" is
therefore called an atfractive or stable fixed point. By contrast, O is a repellent
or unstable hixed point, since the orbit of any initial x-value, even one
infinitesimally removed from 0, will proceed to move away from § and
toward x”. Note that sometimes the iterates of f will overshoot x7, sometimes
they will fall short—but they inexorably draw closer to x°, zeroing in on it
like swallows returning to Capistranc. One might also think of such familiar
and charming metaphors of prey-seekers as heat-seeking missiles, mos-
quitos, bloodhounds, Nazi-hunters, sharks, and lastly, the children’s rhyme, -
“Arcound the world, and around the world, goes a big bear; he bores a hole,
and he bores a hole, right . .. n there I

What accounts for this radical qualitative difference between the two fixed
points (0 and %) of /? A careful look at Figure 16-2 will show that it is the
fact that at G, the curve 1s sloped too steeply. In particular, the slope there
is greater than 45 degrees. Itis the local slope of the curve that controls how
far you move hornzontally each time you iterate /. Whenever the curve is
steeper than 45 degrees {(either rising or falling) it tends to pull you farther
and farther away from your starting peint as you repeatedly iterate by rules
(1} and (2). Hence the criterion for the stability of a fixed point is: The slope
at the fixed point should be less than 45 degrees. Now, this is the case for
x" when X equels 0.7. In fact, the slope there is about 41 degrees, whereas
at 0 it 1s much greater than 45 degrees. .

What happens if we increase A? The position of x* (x* being by definition
the x-coordinate of the pomnt where the curve f and the line y =x intersect)
will change, and the slope of f at x” will increase as well. What happens when
the slope hits 45 degrees or exceeds it? This occurs when A is 3/4. We will
ﬁmmm._wmm_ummwm:mws.mo?wmw-wsov\wFnﬁcm_oorm:rmmnmﬁwmow,mwmmr:%

1"

greater A-knob setting, namely h=0.785. (See Figure 16-3.) .
What if we begin with some random seed instead, again say x =0.04? The
resulting orbit is shown in Figure 16-3a. As you can see, a very pretty thing

*

happens. At first the values move up toward the vicinity of x™ (now an
unstable fixed point of /), but then they spiral gradually outward and settle
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down smoothly te a kind of “square dance” converging on two special
values x; and x,. This elegant oscillation is called a 2-¢ycle, and the pair of
x-values that constitute it {x] and x;) 1s again an attractor—in particular, an
attractor of period two. This term means that cur 2-cycle is stable: it attracts
x-values from far and wide as f is iterated. The orbit for any positive seed
value (except x” itself} will eventually fall into the same dance. That is, it will
asymptotically approach the perfect 2-cycle composed of the points x,” and
xy", although it will never quite reach it exactly. From a physicist’s point of
view, however, the accuracy of the approach soon becemes so great that one
can just as well say that the orbits have been “trapped” by the attractor.
An enlightening way to understand this is to look at a graph of a new
function made from the old one. Consider the graph of g (x) =f{f(x}), shown
in Figure 16-35. This two-humped camel is called the iterate of £ First of all,
observe that any fixed point of f is alsc a fixed point of g, so that 0 and
x" will be fixed poinis of g. But secondly observe that since f(x]) equals
x4, and conversely f{x]} equals x], g will have two new fixed points: g(x])"
=z, and g{x;)=x,;. Graphically, x] and x," are easily found: they are’
intersection points of the 45-degree line with the two-humped graph of g
{x). There are four such points (0 and x* being the other two). As we have:
seen, the criterion for the stability of any fixed point under iteration is that:
the slope at that point should be less than 45 degrees. Here we are
concerned with fixed points of g, and hence with g's slope (as distinguished .
from /s siope). Indeed, in the same figure, you can clearly see that at 0 and
at x°, g is sloped more steeply than 45 degrees, whereas at both x; and
x4, £'s slope is less than 45 degrees. In fact, quite remarkably, not only are’.
both slope values less than 45 degrees, but also, as it turns out through a.
simple bit of calculus, they are equal (or “slaved” to each other, as it is.
sometimes put}.

AGURE 164, A pusture of £ iterate’s iterate h at a still higher value of k, namely 0.87.

Here, as with a joke, you may anticipate the punch line by the time you
ve heard the theme and one variation. Hence by now you have probably
1 maarmﬂ at some new value A,, all four points in /7s attractor will
taneously fission, yielding a periodic attractor consisting of eight
-and thereafter this pattern will go on and on, doubling and
ling as various special A-knob settings are reached and passed. If this
guess, you are quite right, and the underlying reason is the same each
é (identical) slopes at all the stable fixed points of some graph reach
.ﬂnm_ angle of 45 degrees. In the case of the first fission (at A)) it was
pe of f itself at the single point x*. The next fission was due to the
es:at g’s two stable fixed points x| and x; simultaneously reaching 45
s. Analogously, A, is that value of A at which the slope of A(x)=
=f(f(f(f{x))) hits 45 d€grees simultaneouly at the four stable fixed
of 4. And so it goes. Figure 16-4 shows the bumpy appearance of
t 2 A-value of approximately 0.87.

Figure 16-5, the locations on the x-axis of the stable fixed points of
shown for A, through A; (by which time there are 32 of them, some
ted so &omm:\ that 9@ cannot be distinguished). The points are
dqust at the moment of their becoming unstable, each one like a cell

We have now seen an attractor of period one get converted into a
attractor of period two at a special value of A (namely, A=3/4). Precisely a
that value, the single fixed point x” splits into two oscillating values, x] and
x5, Of course they coincide at “birth”, but as A increases, they separate an
draw farther and farther apart. This increase of A will also cause g’s slop
at these two stable fixed points (of g) to get steeper and steeper until finally
at some h-value, g like its progenitor f; will reach its own breaking poin
{i.e., the identical slopes at both x; and x; will exceed 45 degrees), and eac
of these two attracting points will break up, spawning its own local 2-cycle
(Actually, the cycles are 2-cycles only as far as g is concerned; for f; the ne
points are elements of an attractor of period four. You must be careful «
keep f and g straight in your mindi} These two splitiings will happen a
exactly the same “moment” (e, at the same A-knob setting), since the value
of the slope of g at x] is slaved to the value of the slope at x;. This A- _Sov
setting will be mmzma A,, and it has the value of 3.86237 .

tH
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FIGURE 16-5. Showing how stable attractors become unstable and undergo “‘fission” at a
series of increasing h-values, denoted A for n=1, 2, 3,... Note how the boxed subpatiern on
the lowest line resembles the entire patiern two lines above. This resemblance becomes more and
more accurate the larger n gets.

FIGURE 16-6. A graph showing the evolution of atiractors as M increases from 0 to 1.
Bifurcations begin at h=0.75 and escalate towards chaos. The “‘chaotic region”, beginning at
he==0.892 .., shows unexpectedly beawiiful fine structure. [From “‘Roads to Chaos” by Leo P.
Kadanoff in Physics Today, December 1983 p.51; see also J. P. Crutchfield, D. Farmer, and
B. A. Huberman, Physics Reports, Vol 92, pp. 45-82, December, 1982.]
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Mathematical Chaos and Strange Attractors

on the verge of division. Notice the neat pattern in the distribution of the
attracting points. Looking at these graphs of the spacings of the elements
of the successive period-doubled attractors of f; you can see that each line
can be made from the one above it through a recursive geometric scheme
whereby each point is replaced by two “twin” points below it. Each local
clustering pattern of peints echoes the global clustering pattern, simply
reduced in scale (and also, in aliernating local clusters, left and right are
reversed). For example, in the bottom line a local group of eight points has
been outlined in color. Notice how the group of points is like a miniature
version of the global patiern two lines above it.

The discovery of this recursive regularity, first made on a little calculator
by Feigenbaum, is one of the major recent advances in the field. It states in
particular that to make line # +1 from line », you simply let each point on
line » give birth to “twins”’. The new generation of points should be packed
in about 2.5 times more densely than the old generation was. More exactly
stated, the distance between new twins should be a times smaller than the
distance between their parent and its twin, where a is a constant,
approximately equal to 2.5029078750958928485 . . . This rule holds with
greater and greater accuracy the larger n becomes.

What about the values of the A’s? Are they headed asymptotically toward
1? Surprisingly enough, no. These A-values are quickly converging on a
particular critical value A, of size roughly 0.892486418 ... And their
convergence is remarkably smooth, in the sense that the distance between
successive A’s is shrinking geometrically. More precisely, the ratio
(A,—A,_)/(A,.;—A,) approaches a constant value called & by
Feigenbaum, its discoverer, but more often referred to simply as
“Feigenbaum’s number” by others. Its value is approximately
4.66920160910299097 .

In short, as A approaches A, at specal A-values predicted by
* Feigenbaum’s constant 8, f’s attractor doubles in population, and its

increasingly many elements are geometrically arranged on the x-axis
according to a simple recursive plan, the main determining parameter of
~which is Feigenbaum’s other constant, a.

. Then for A beyond A —called the chaotic regime—the results of iterating
f can, for some seed values, yield orbits that converge to no finite attractor.
These are aperiodic orbits. For most seed values, the orbit will remain
._..m_ums.o&n, but the periodicity will be very hard to detect. First of all, the
period will be extremely high. Secondly, the orbit will be much more chaotic
than before. A typical periodic orbit, instead of quickly converging to a
geometrically simple attractor, will meander all over the intervai [0,1}, and
its behavior will appear indistinguishable from total chaos. Such behavior
s termed ergodic. Furthermore, neighboring seeds may, within a very small
number of iterations, give rise to utterly different orbits. In short, a statistical
‘view of the phenomena becomes considerably more reasonable beyond A..
~:Figure 16-6 beautifully portrays the period-doubling route to chaos, as

“©
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well as what happens after you've gotten there. The bifurcations are clear
to the eve, and since the horizontal distance from each set of them to the
nexi shrinks geometrically, the onset of chaos at A_ is plainly visible. But the
regularity of the structure to the right of A —that is, in the chaotic regime
—is quite unexpected. It is certain that there are many deep mathematical
secrets locked up in this elegant graph.

&* * &

Now, what do such novel concepts as the iteration of folded functions,
period doubling, chaotic regime, and so on have to do with the study of
turbulence in hydredynamic flow, the erratic population Huctuations in
predator-prey relations, and the instability of laser modes?/The basic idea
is embedded in the conirast between laminar flow and turbulent flow. In a
peacefully flowing fluid, the flow is laminar—a soft and gentle word that
means that all the molecules in the fluid are moving like cars on a multilane
freeway. The key features are: (1) that each car follows the same path as its
predecessor, and (2) that two nearby cars, whether they are in the same lane
or in different ones, will, as time passes, slowly separate from each other—
essentially in proportion to the difference in their velocities—which is to say,
inearly. These features alsc apply to molecules of fluid in laminar flow;
there, the lanes are called streamiines or laminas,

i By contrast, when a fluid is churned up by some external force, this
smooth behavior turns into turbulent behavior, as is seen in breakers at cthe
beach and cream being stirred into coffee. Even the word ‘“‘turbulent
sounds much harsher and more angular than the soft word “laminar”. Here,
the image of a multilane freeway no longer holds; the streamlines separate
from each other and tangle in the most convoluted of ways, as shown in
Figure 16-7. In such systems there are eddies and vortices and all sorts of
unnamable whorls on many size-scales at once, and consequently, two
points that were initiaily very close may soon wind up in totally different
regions of the fluid. Such quickly diverging paths are the hallmark of
turbulence. The distance between points can increase exponentially with
time, instead of just linearly, and the coefficient of time in the exponent is
called the Lyapunov number, When one speaks of chaos i turbulent flow, it
is this rapid, nearly unpredictable separation of neighbors that is meant.™
Such behavior is strikingly reminiscent of the rapid separation, in the chaotic_
regime of A, of two orbits whose seeds might originally have been very close
together,

FIGURE 16-7. Showing the approach to turbulence. In the upper two pictures, a rod was
drawn through a viscous liguid once, setting up trains of vortices behind it. In the lower two, the
rod was drawn more than once, and the forms are therefore more complicated and recursive-
seeming. It is provocative to compare this figure with Figure 13-4. [From Sensitive Chaos
by Theodor Schwenk, |

2
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This suggests that the “scenario” (as it is called) by which pretty, periodic
orbits gradually give way to the messy, chaotic orbits of our parabolic
function might conceivably be mathematically identical to the scenario
underlying the transition to turbulence in a fluid or other system. Exactly
how this connection is established, though, requires some more detailed
setting - of context, In particular, we must briefly consider how the
spatio-temporal flow of a fluid or some other entty, such as population
density or money, is mathematically modeled.

In such real-world problems, the most successful equations yet found to
model the phenomena are diferential equations. A differential equation
connects the continuous rate of variation of some quantity to that quantity’s
current size and the current sizes of other quantities. Moreover, the time
variable is itself continuous, not jerking from one discrete instant to the next
as some strange clocks and watches occasionally do, but indivisibly flowing,
like a liquid. One way to visualize the patterns defined by differential
equations 15 to imagine a multidimensional space—it could have thousands
of dimensions, or merely a few—in which a point is continucusly tracing out
a curve. At any one moment, the single point contains all the information
about the state of the physical system. Its projections along the various axes
give the values of all the relevant quantities that pin down a unique state.
Clearly the space-—called phase space—would need to have an enormous
number of dimensions for a mere point to store the entire shape of a wave
breaking on a beach. On the other hand, in a simple predator-prey relation,
only two dimensions suffice: one coordinate, say x, giving the predator
population and the other, say y giving the prey population. Two
dimensions are more easily visualized, and so we will stick with that case for
the time being. The ideas generalize, however, to higher-dimensional cases.

As ume progresses, ¥ and y determine each other in an intertwined
manner. For example, a large populiation of predators will tend to reduce
the population of prey, whereas a small population of prey will tend to
reduce the population of predators. In such a system, x and y constitute a
single point {xy) that swirls around smoothly in a continuous orbit on the
plane. (Here the sense of “orbit” is different from the preceding one—that
of the discrete, or jumping, orbits we saw when our parabolic function was
iterated.) One such possible orbit appears in Figure 16-8; it is generated by
a differential equation called “Duffing’s equadon”. It looks like the path of
a buzzing fly in your bedroom—or rather, it looks like the shadow of the fly’s
path on a wall. As a matter of fact, this self-intersecting two-dimensiconal
curve 15 the shadow of a non-self-intersecting three-dimensional curve. The
motion of 2 point in phase space must always be non-self-intersecting. This
arises from the fact that a point in phase space representing the state of a
system encodes all the information about the system, including its future
hisiory, so that there cannot be two different pathways leading out of one
and the same point,

In particular, in Duffing’s equation there is a third variable, z, that I have

(a}

FIGURE 16-8. [f values of x and v mutually determine each other according to Duffing’s
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not mentoned so far. If you think of x 2nd y as representing predator and
prey populations, then you can think of z as representing a periodically
varying external influence, such as the sun’s azimuth or the amount of snow
on the ground. Now, if you will allow me to mix my buzzing-fly image with
the predator-prey example, imagine a bedroom with a fly buzzing
periodically back and forth between two walls. Let us say it takes the fly a
year to cross the room and come back. (Perhaps it is a rather large bedroom,
or maybe just a slow fly.) In any case, as the fly fhies, its shadow on one of
the two walls traces out the curve shown in Figure 16-8a. If the fly ever
chances to come back to a point in the room which it has passed through
before, it is doomed to loop forever, following the path it took the preceding
time over and over again. This gives you a picture of the continuous orbit
of a point in phase space representing the state of dynamic system
controlled by differential eguations.

Now suppose we wanted to establish some connection of these systems
1o discrete orbits. How might we do so? Well, the values of %, 3, and z need
not be watched at all moments; they can be sampled periodically, at some
natural frequency. In the case of animal populations, a vear is the obvious
natural period. The sun’s azimuth is exactly periodic, and the weather at
least tries to repeat itself a year later. Thus a natural sequence of discrete
points (¥, ¥, 2;}, ®a ¥ar 24), . . - can be singled out—one per year. It is as
if a strobe light blinked regularly and froze the fly on special annual
occasions——perhaps at midnight every Halloween. Or you can think of 2
firefly that flashes on for just a split second once every year. At all other
times its peregrinations around the room are unseen. Figure 16-84 shows
a seguence of discrete points along the fly-path’s shadow, marked by
numbers telling when they occurred. Gradually, as many “years” elapse,
encugh of these discrete points will accumulate that they will start to form
a recognizable shape of their own. This pattern of points is a discrete ““orbit”,
and so it 1s closely related to the discrete orbits defined by the iteration of
our parabola f(x}. In that parabolic case, we had a simple one-dimensional
recurrence relation (or an iteration):

Xngl ”.\aﬂ.xav.
Here we have a two-dimensional recurrence:
Xa+_”\_@=%av
Yn 1= 2 n:Yn)

This is a system of coupled recurrence relations; in which output values of
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produce the n+1st generation. On and on it goes, generation after
generation. In higher-dimensional cases, of course, there are more such
equations. Nevertheless, the skeleton of all these systems remains the same:
a multidimensional point (x,.y,. z,,, . . .) jJumpsfrom one discrete location in
phase space to another, as a discrete variable, n, representing time jumping
ahead 1n discrete units, 1s incremented.

Notice that we have finessed our way around the continuous time variable
that is involved in differential equations. We have done it by focusing on the
way the point is connected to its predecessor one “year” earlier {or whatever
natural period is involved). But is there always a “natural period” at which
to look at a system of mutually interiwined differential equations? Not
always. In some situations, however, there is, and this happens to be the case
in all situations where turbulent behavior occurs.

Why is this so? All systems that exhibit turbulent behavior are dissipative,
which means that they dissipate, or degrade, energy from more usable forms
such as electricity into the less usable form of heat. In the case of
hydrodynamic flow, this dissipation is caused by friction, and in the other
systems we have been considering, by abstract analogues of friction. A
famibiar consequence of friction i1s that objects in motion will grind to a halt
unless energy is pumped in. Now if we “drive” a dissipative system with a
periodic driving force (you can imagine, for example, stirring a cup of coffee
with a spoon in a periodic, circular way), then, of course, the system will not
grind to a halt; it will head for some kind of steady state. Such a steady state
is a stable orbit—or in our terms, an attractor in phase space. And since we
have driven the system with a periodic spoon, we have defined a natural
frequency at which to flash our strobe light and freeze the system’s state—
namely, each time the spoon comes swinging around and passes some fixed
mark on the cup, such as its handle. This will constitute our “year”. In this
way, continuous time can be replaced by a series of discrete instants, as long
as we are dealing with a dissipative system driven by a periodic force. And
so continuous orbits can be replaced by discrete orbits, which brings
iteration back into the picture.

If the driving force itself has no natural period (it may be simply a constant
force), there is still a way to define a natural period, as long as some variable

. in the system swings back and forth between extremes. Just flash your sirobe
. whenever that variable hits its extreme value, and the fly will still be caught
-at discrete instants. This type of discrete representation of the fly’s motion
- "in a multidimensional space is called a Poincaré map.
... This stirring argumeny is only hand-waving, of course, and needs much
~‘more rigor to be convincing to a mathematician. It nonetheless gives the
“flavor of how the study of a set of coupled differential equations can be
replaced by the study of a set of coupled discrete recurrence relations. This
-is the vital step that brings us back to the recent discoveries about the

parabola.
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In 1975, Feigenbaum discovered that his numbers a and & do not depend
on the details of the shape of the curve defined by f{x}. Almost any smooth
convex shape that peaks in the same spot will do as well. Inspired by the
structural universality discovered by Metropolis, Stein, and Stein,
Feigenbaum tried working with a sine curve instead of a parabola. He was
flabbergasted by the reappearance of the same numerical values, to many
decimal places, of the numbers a and 8§, which had characterized the
period-doubling and the onset of chaos for the parabola. For the sine carve
just as for the parabola, there is a height-parameter A and a set of special
A-values that converge to a critical point A.. Moreover, the onset of chaos
at A, is governed by the same numbers « and 8. Feigenbaum began to
suspect that there was something universal going on here. In other words,
he suspected that what is more important than f itself is the mere fact that
J is being iterated over and over. In fact, he suspected that f itself might
play no role in the onset of chaos.

It is not quite that simple, in reality. Feigenbaum soon discovered that
what does matter about f s just the nature of the peak at its very center. The
long-term behavior of orbits depends only on an infinitesimal segment at
the crest of the graph, and ultimately, it depends only on the behavior at
the very point where the maximum occurs! The rest of the shape, even the
region close to the peak, is irrelevant. A parabola has what is called a
guadratic maximum, as do a sine wave, a circle, and an ellipse. In fact, the
behavior of a randomly-produced smooth function at a typical maximum
would be expected to be of the quadratic type, in the absence of any special
coincidences. So the parabolic case, rather than being a quirky exception,
begins to seem like the rule. This empirical discovery by Feigenbaum,
involving two fundamental scaling factors a and § that characterize the
onset of chaos through period-doubling attractors, represents a new kind
of universality, known as metrical universality, to distinguish it from the
earlier-known structural universality, This empirically demonstrated metrical
umiversality was later proved to be correct (in the more orthodox sense of
proof) in the one-dimensional case by Oscar Lanford.

A truly exciting development occurred when Feigenbaum’s constants
unexpectediy turned up in some messy models of actual physical systems
that exhibit turbulence, not just in pretty and idealized mathematical
sysiems. Valter Franceschini of the University of Modena in Italy adapted
the Navier-Stokes equation, which governs all hydrodynamic flow, for
computer simulation. To do so, he turned it into a set of five coupled
differential equations whose Poincaré maps he could then study numerically
on his computer. He first found that the system exhibited attractors with
repeated period-doubling as its governing parameters approached the
values where turbulence was expected to set in. Unaware of Feigenbaum’s
work, he showed his results to Jean-Pierre Eckmann of the University of
Geneva, who immediately urged him to go back and determine the rate of
convergence of the k-values at which period-doubling occurred. To their
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amazement, Feigenbaum’s a- and §-values—accurate to about four decimal
places——appeared seemingly out of nowhere! For the first time, an accurate
mathematical model of true physical turbulence revealed that its structure
was intimately related to the humble chaos lurking in the humble paraboela
y=4hx(1—x). Subsequently, Eckmann, Pierre Collet, and H. Koch showed
that in the behavior of a muitidimensional driven dissipative system, all
dimensions but one tend to drop out after a sufficiently long period of time,
and so one should expect the characteristic of one-dimensional behavior—
namely Feigenbaum’s metrical universality—{o reappear.

Since then, experimentalists have been keeping their eyes peeled for
period-doubling behavior in actual physical systems (not just in computer
models). Such behavior has been observed in certain types of convective
flow, but so far the measurements are too unprecise to lend very strong
support to the idea that the parabola contains the clues revealing the nature
of genuine physical turbulence. Still, it is tantalizing to think that somehow,
all that really matters is that a dissipative set of coupled recurrence relations
is being iterated—but that the detailed properties of those recurrences can
be entirely ignored if one is concentrating on understanding the route to
turbulence.

Feigenbaum puts it this way. One often sees a pattern of clouds in the sky
—a celestial treilis composed of a myriad of small white puffs stretching
from horizon to horizon—that clearly did not happen “'by accident”. Some
systematic hydrodynamic law has got to be operating. Yet, says Feigenbaum,
it must be a law operating at a higher level, or on a larger scale, than the
Navier-Stokes equation, which is based on infinitesimal volumes of fluid and
not on large “chunks”. It seems that in order to understand such beautiful
sky patterns, one must somehow bypass the details of the Navier-Stokes
equation, and come up with some coarser-grained but more relevant way of
analyzing hydrodynamic flow. The discovery that iteration gives rise to
universality—that is, independence of the details of the function (or
functions) being iterated—offers hope that such a view of hydrodynamics
may be well on its way to emerging.

% * #
Well, we have covered attractors and turbulence; what about strange

attractors? We have now built up the necessary concepis to understand this
idea. When a periodically driven two-dimensional (or higher-dimensional)

dissipative system is modeled by a set of coupled iterations, the successive

points lit up by the flashes of the periodic strobe light trace out a shape that

_plays the role, for this system, that a simple orbit did for our parabola. But
when one is operating in a space of more than one dimension, the

-possibilities are richer. Certainly it is possible to have a stable fixed point
(an attractor of period one). This would just mean that at every flash of the
“strobe, the point representing the system’s state is exactly where it was last
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time. It 1s also possible to have a periodic attractor: one where after some
finite number of flashes, the point has returned to a preceding position. This
would be analogous to the Z-cycles, 4-cycles, and so on that we saw
occurring for the parabola.

But there is another option: that the point never returns to its original
position in phase space, and that successive flashes reveal it to be jumping
around quite erratically inside a restricted region of phase space. Over a
period of time, this region may take shape before an observer’s eyes as the
strobe flashes periodically. In the majority of such cases so far studied, a
most unexpected phenomenon has been observed to take place: the
erratically jumping point gradually creates a delicate filigree that recalls the
“faint {antastic tracery made by frost on glass”. (I owe this poetic image to
the American critic James Huneker, who used it to describe the magical
effect of one of Chopin’s piano études: Op. 25, No. 2—see Chapter 9.) The
delicacy is of a rather specific kind, closely related to the “fractal” curves
described by Benoit Mandelbrot in his book The Fractal Geometry of Nature.
In particular, any section of such an attractor, when blown up, reveals itself
to be just as exquisitely detailed as was the larger picture from which it was
taken. In other words, there is an infinite regress of detail, a never-ending
nesting of pattern within pattern. One of the earliest of such structures to
be found, called the aitractor of Hénon, is shown in Figure 16-9. It is

generated by the sequence of points (x,5,) defined by the following-

recurrence relations:

_ 2
Xppl =Ya— @K, —1
.@_:._L”@Xx

Here, o is equal to 7/5 and & to 3/10; the seed values are x,=0 and yo=0.
"The small square in Figure 16-9¢ is blown up in Figure 16-96 to reveal more
detail, and then ancther square in Figure 16-95 is blown up in Figure 16-9¢
to reveal yet finer detail. Note that what we appear to have is a sort of
three-lane highway each of whose lanes breaks up, when magnified, into
more parallel lanes, the outermost of which is a new three-lane highway—
and on and on it goes. Any perpendicular cross-section of this highway
would be what is called a “Cantor set”, formed by a simple and famous
YeCcursive process,

Begin with a closed interval, say [0,1]. (“Closed’ means that the interval
includes its endpoints.) Now eliminate some open central subinterval.
(Smce an open subinterval does not include its endpoints, those two points
will remain in the Cantor set being constructed before your eyes.) Usually
the deleted subinterval is chosen to be the middle third (1/3, 2/3), but this
1s not necessary. Two closed subintervals remain. Subject them to the same
kind of process—namely, eliminate an open central subinterval inside sach
of them. Repeat the process ad infinitum. What you will be left with at the
end of your infinite toil will be a delicate structure consisting of isolated

FIGURE 16-9. The attracior of Hénon: a strange attractor. In (a), the full curve is .Q.Ssa.
. In (b), the boxed region of (a) &5 blown up to reveal hidden details. In (¢}, the @ox& region of
- (b) is further blown up to reveal yet more deeply hidden details. And on and on it could go, ad
infimtum.
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a wire. Their number, however, will be uncountably infinite, and their
density will depend on the details of your recursive elimination process.
Such is the nature of a Cantor set, and if an attractor’s cross-sections have
this weird kind of distribution, the attractor is said to be strange, and for good
reason.

Another beausiful strange attractor is generated by the “stroboscopic”
points 0, 1, 2, ... in Figure 16-85. Since this pattern comes out of Duffing’s
equation, it is called “Duffing’s attractor”, and it is shown in a slightly
expanded scale in Figure 16-10. Notice its remarkable similarity to the
atiractor of Hénon. Could this be universality showing its face again?

It is interesting that for the parabola, at the critical value X, /s attractor
suddenly consists of infinitely many points, since it is the culmination of an
infinite sequence of bifurcations. You can visualize this set either as the
limiting case of the horizontal point-sets in Figure 16-5, or as the vertical
point-set belonging to x=2X, in Figure 16-6. The precise scatter-pattern of
this uncountable point-set is determined by Feigenbaum’s recursive rule
involving his constant a. Given its recursive genesis, it seems probable that
this particular atiractor is a Cantor set. Hence the fertile parabola has
provided us with an example of a one-dimensional strange attractor!

In the chaotic regime of the more general k-dimensional case, long-term
prediction of the path that a point will take is quite impossible. Two nearly

FIGURE 16-10. The sirange attractor that emerges from a Poincaré map of Duffing’s
equation.

i e
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touching points on a strange attractor will, after a few blinks of the strobe
light, have wound up at totally different places. This is called sensifive
dependence on initial conditions and is another defining criterion of a strange
atiractor,

* £ £

At present, no one knows just why, how, or when strange attractors will
crop up in the chaotic regimes of iterative schemes representing dissipative
physical systems, but they do seem to play a central role in the mystery of
turbulence. David Rueile, one of the prime movers of this whole approach
to turbulence, wrote: “These systems of curves, these clouds of points,
sometimes evoke galaxies or fireworks, other times quite weird and
disturbing blossomings. There is a whole world of forms still to be explored,
and harmonies still to be discovered.”

Robert M. May, a theoretical biologist, concluded his now quite famous
review article covering the field in 1976 with a plea that I find most apt and
would like to repeat:

I would urge that people be introduced to the equation y =4hx({1—x) early
in their mathematical education. This equation can be studied phenomeno-
logically by iterating it on a calculator, or even by hand. Its study does not
involve as much conceptual sophistication as does elementary calculus. Such
study would greatly enrich the student’s intuition about nonlinear systems.

Not only in research but also in the everyday world of politics and economics,
we would all be better off if more people realized that simple nonlinear systems
do not necessarily possess simple dynamical properties.

Post Scriptum.

Stanislaw Ulam, a uniquely inventive mathematician and a warm and
delightful human being, died as I was working on this series of postscripts.
I had the good fortune to get to know Stan Ulam and his French-born wife
Francoise in the summer of 1980, when I visited Santa Fé and stayed with
them for a few days. I had always admired and felt kinship with Ulam’s
strange style in mathematics, totally driven by a passion for the the quirky
and the unpredictable, pored by the pure and regular. Ulam loved more
than anything to find total chaos in the midst of pristine order. Of course,
the thrill was in knowing that there was some kind of law to this chaos, so
that in reality—that is, in God’s eye—there was simply a deeper kind of order
underneath it all. The bizarre yet tight connections between randomness
and order are what all of Ulam’s greatest discoveries are about. His style was
iconoclastic, to be sure. He was perfectly able to do mathematics in the
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classical “theorem-proof-theorem-proof” way, but he delighted i the
experimental approach, using computers to study crazy behaviors of
oddball functions he dreamt up. In some sense, Ulam was a genuine
mathematical artist, unlike so many mathematicians. A piece of math by
Ulam often feels much more like a creation than like a discovery. It is more
idiosyncratic, more easily recognizable as the product of a particular mind,
than most mathematical discoveries are.

Aside from being fascinated by mathematics itself, Ulam was also
fascinated by the human mind’s workings, and he strove to express his vague
but provocative ntuitions in his writings. I always think of his “ten dogs”
theory of memory. The idea is this: When you are searching for a memory
that eludes you but that you know is there, what you in effect do 1s release
ten “dogs” in your brain and let them go “snifling” in parzallel. Each dog
will start to rummage around here and there, sometimes going in arcles,
sometimes smelling down wrong alleys, but since there are a bunch of them,
you can afford to let them smell out many false pathways. They don’t need
to be very bright; they just need to have had a whiff of the original idea, and
they will follow that spoor high and low. Eventually, it is likely that one dog
or another will trot home carrying the desired memery in its mouth. Ulam’s
autobiography, Adventures of a Mathematician, is packed with such glim-
merings about how minds work, as well as with droll anecdotes about many
of this century’s most brilliant mathematicians.

Ulam was very curicus about language. He and his wife came to this
country about 50 years ago, and both loved the English language. But
whereas Stan never lost his strong Polish accent and constantly made errors
in English, Francoise eliminated almost every trace of her French accent and
became a virtually flawless speaker, whose mastery of idiomatic phrases
exceeded that of most native speakers. This caused some amusing
lighs-hearted bickerings between them that I witnessed. Frangoise one day
used some baseball idiom such as “he threw them a curve ball” or “in the
ball park”, and Stan immediately objected, saying “You can’t use that
expression! You didn’t grow up playing baseball, so you don’t really know
what it means!”” Francoise defended herself, saying that she had a good idea
of its literal meaning but that in any case Stan’s point was a red herring. I
bought her argument lock, stock, and barrel. After all, how many native
speakers of English know what domains such phrases as “red herring” or
“lock, stock, and barrel” come from? Yet we certainly all use many such
phrases and feel perfectly entitled to do so.

Like many of the brightest mathematicians and physicists working during
and just after World War II, Stan Ulam got involved in military projects. His
invention, with John von Neumann, of the Monte Carlo method was a key
element in the development of the hydrogen bomb. The same forces that
drove him to wonder about the cardinality of abstrusely defined sets and the
dimensionality of peculiarly defined spaces also guided him to accurate ways
of modeling the statistics of chain reactions. At the time he did the work,
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the nature of the dilemma it would lead humanity as a whole into was not
so clear as it now is. To be sure, Einstein had warned us about our siow drift
into unparalleled peril, but few people had Einstein’s clarity of vision. One
of the paradoxes about people is that they are so small compared to the
events they can be involved in. Stan Ulam was an ant in a vast colony, and
though his role was more significant than that of most ants, he still had no
control over the nature of the colony itself. Human nature is one thing, but
humanity’s nature 1s another thing.

A good and generous person like Stan Ulam can still be a part of a bad
and frightful thing like the arms race. Clearly Ulam had many afterthoughts
about his rele in these developments, and it is to his credit that he tried to
think it all through rationally. Others in similar pesitions have been far more
trapped and narrow-minded, unable to see, or to admit seeing, the complex
tragedy that has been unfolding as a consequence of their small actions
jomed with the small actions of many, many others.

For me it was a privilege to get to know and be friends with this warm and
insightful man. I hope that in the long run, Stan Ulam’s contributions to
mathematics will prove to have outweighed his contributions to a potential
Armageddon.

One of the basic themes of this column is what I call locking-in. For no
particular reason, I failed to use that term in the column, but it 1s a good
term. The imagery I wish to convey is that of a system that seeks and
gradually settles into its own most stable states, and the mechanism whereby
it seeks and attains such loci of stability is feedback. A system that locks into
a state is in a stable equilibrium, which means that if you perturb it
somehow, it will swiftly return to the state it was in—there are restoring
forces that push it back. Perhaps the most primordial image is that of the
particle in the potential well—for example, a marble sitting at the bottom
of a round dish. If you ping it lightly with your finger, it will oscillate for a
while, but eventually will come to rest again just where it was before: at the
sole stable fixed point of the system. Here, as in the column, “fixed point”
means that the system’s “output” at time ¢ (namely, the marbie’s position
at time ¢) is identical to the “input” at time f—1 (namely, the marble’s
position at time {—1). In this case, the attractor is a single point in space,
so it is ridiculously easy to visualize. Most of the attractors in the chapter,
however, were orbits rather than single points, so they are shightly more
abstract. However, if you think of an orbit as simply a point mn a

. muliidimensional space, then the concept of zeroing in on a fixed point and
- the concept of settling down in a stable orbit merge somewhat.

One of the most intuitive as well as charming examples of locking-in 1s
the search for a solution to Raphael Robinson’s puzzle in Chapter 2:
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In this sentence, the number of occurrences of 01s __, of 1is __, of 2
15_,o0f8%1s __,ofd4is__ ofbis_,of6is __,of 7is _, of Bis _,
and of G 15 .

One way to search for a solution to this puzzle is to fill in the blanks with
an arbitrary sequence of ten numbers, such as <0,1,2,3.4,5,6,7,8,9>, and
see what happens when you check out the truth of the resulting sentence.
It turns oui actually to have two occurrences of each digit. Thus the
vector <0,1,2,5,4,5,6,7,8,9> leads to the vector <2,2,2,2,2,22222>
by the process we’'ll call “Robinsonizing”. Where does that vector lead?
Clearly 10 <1,1,11,1,1,1,1,1,1,1 >, which leads to <1,12,1,1,1,1,1,1,1,1>,
whichleadswo <1,11,2,1,1,1,1,1,1,1 > ,whichleadsto <,11,2,1,1,1,1,1,1,1 >
—and lo and behold, we've entered a closed loop!

This vector <1,11,2,1,1,1.1,1,1,1> 1s hke a whirlpool or a vacuum
cleanier: it sucks chings near to it into its vortex. It is a trap, a fixed point
—an attractor. It is noi unique; there is another such vortex, which I will
leave it to you to find. Furthermore, there is at least one two-state loop, or
period-two attractor, that I know of. T have reason to suspect that everything
leads to one of those three attractors, but I could be wrong. You could
search for a period-two attractor by writing down a vector of length twenty
and generating its successor length-twenty vector as follows: Let the new
vector’s first half be derived from the old one’s second half by
Robinsonizing, and let the new one’s second half be denved from the old
one's first half by Robinsonizing. If you now iterate this double-barreled
Robinsonizing operation starting with a random seed, you will eventually
settle down on a fixed point.

Notice that we are now calling a period-two attractor a “fixed point”.
Notice also that this is a “point” in a twenty-dimensional space! The point
is, we can view the system either as bouncing back and forth between two
ten-dimensional points (a period-two attractor) or as sitting still on a fixed
twenty-dimensional point. If by chance there were a loop of length four, we
could similarly think of it as being 2 fixed pomnt in a 40-dimensicnal space.
As long as we're willing to “‘up” the dimensionality of the space, we can
store more and more information in a single point. Thus fixed points and
stable orbits are very close concepts.

This example serves to illustrate how feedback—plugging the system’s
output back into the system as input—ushers you to the fixed points. Why
should this be sor Why could the system not thrash about randomly,
somehow avoiding all fixed points? In short, why are fixed points so often
atiractive? Why could there not be a large number of fixed points that are
totally isolated, like islands in a vast sea, unreachable via any obvious route?
Could there not be fixed-point “anti-whirlpools” that repel any approacher
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that is not dead on target? In the case of Robinson’s puzzle, the answer is
no; but there are such systems. Indeed, in the column I pointed out how
there are repellent as well as attractive fixed points for functions of the form
47x (1 —x). Butin general, it seems to be a very good rule of thumb to search
for fixed points by starting out somewhere at random and then hoping that
you will get sucked inio a stable orbit. Most likely you will, and you will
thereby discover a locus of stability, a locked-in solution.

Even more remarkable, it seems generally reliable that you are more likely
to be sucked into a short loop than a long one, if short ones exist. Thus,
generally speaking, the siablest behavior of a system seems also to be its
simplest behavior. This is true for systems of nearly any sort one can imagine.
In the hydrogen atom, for instance, the ground state—the lowest-energy
state—is spherically symmetric, and is the only one to have that simpie
property. Why should this be so, all across the board? Why are stable things
the simplest things as well? Or, conversely, why are the simplest things the
stablest of all? A toughie,

A puzzle more complex than Robinson’s but similar in flavor is the search
for self-documenting or self-inventorying sentences, which was carried out
with such great gusto by Lee Sallows (see Chapter 3). His “logological
rocket” was a machine for seeking attractive fixed points in a certain
logological space. The book Loopings by Aldo Spinelli is a remarkable
investigation of regions of a similar logological space, and his search is
guided by the same old prinaple: that starting somewhere random and
relying on feedback to get you somewhere “better” is the most likely way
to discover a fixed point. This is a most strange way of looking for what
might seem something elusive and precious, yet strange though it might be,
it is very robust.

In Chapter 3's Post Scriptum, I stated that I felt Lee Sallows was
overconfident in wagering that a computer search for a self-documenting
sentence beginning ““This computer-generated pangram contams ...”
would not succeed in ten years. The reason is simple. Lee did not consider
the idea of “iterative convergence” to a solution—that is, the idea of
Robinsonizing, applied to self-descriptive sentences. You begin with a
sentence of the right form, but where all the numbers are randomly chosen.
It’s a blatant lie, but who cares? You just feed it to a program that counts
all its letters and spits out a new sentence with the new letter-counts
replacing the old guesses. Around and around you go ... It is almost

' certain that you will pretty soon fall into an attractive orbit. Probably most
. orbits are fairly lengthy loops, and thus do not yield self-documenting

sentences—but again, who cares? fust try it again with a different random
seed, and keep on doing so, untl you find a fixed point.
This method may sound too simple, but it works. I suggested it to Bob
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French, one of the two translators into French of Gidel, Escher, Bach, and he
was gung-ho about implementing such a program. Within a short time, he
had one up and running. He sent me this note about his discoveries:

I wrote a nice program to solve the Pangram Problem and got an answer,
written, much to my annoyance, in “francaix”. It is:

Cette phrase contient cing a, cing ¢, troix d, douze ¢, un f, un g, quatre h, treize 7,
huit m, six o, troix p, six g, hwst r, six s, quatorze §, dix u, un v, spt X, & quatre z.

Unbelievably, in programming it, I had put the wrong goddam spelling of
“trois” into the program. Oh well, when I corrected the mistake, 1 didr’t get
an answer immediately, but I'm confident that it'll come, in correctly spelled
French, when I get back to work on the thing.

The point is, you don’t need to perform a brute-force search through the
entire space of all possible combinations of numbers filling the 26 blanks
in order to find a perfect self-documenting sentence, not by a long shot! A
Robinsonizing routine, together with a simple-minded loop detector, will
do the trick quite easily, as long as you're willing to try a bunch of different
seeds. The pulling-power of short loops will undoubtedly snag you sooner
or later, and you'll have found your target sentence!

My friend Larry Tesler, equally spurred on by Sallows’ challenge when 1t
appeared in print in A. K. Dewdney’s new Scientific American column called
“Computer Recreations” in October 1984, coded up the Robinsonizing
method in 2 program and soon his computer fell inte a loop that seemed
very close to a solution. By changing his program’s search technique at that
point, Tesler was then easily able to home in on 2 winner, which he gleefully
sent off to both Dewdney and Sallows. Tesler’s sentence runs as follows:

This computer-generated pangram contains six a’s, one b, three ¢’s, three d’s,
thirty-seven ¢’s, six s, three g’s, nine h's, twelve i’s, one j, one k, two l's, three
m'’s, twenty-two n’s, thirteen o’s, three p’s, one g, fourteen r's, twenty-ning §'s,
twenty-four t's, five u's, six v's, seven w’s, four x’s, five v's, and one z.

* =" *

Locking-in is perfectly illustrated by the hypothetical book Reviews of This
Book, described in Chapter 3. There I characterized the method of its
creation as resembling the construction of “self-consistent” solutions via
the “Hartree-Fock’” method. What does that mean? It boils down to the
same thing once more. It turns out to be very hard—in fact, impossible—
to give closed-form solutions to the equations describing any atom more
complicated than a hydrogen atom, with its single electron. When you have
three bodies, as in the helium atom with its two electrons and @ nucleus, the
mathematical complexity is overwhelming. The problem is in essence that
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each electron would “like” to be in a simple hydrogen-like state around the
nucleus, but the other one is blocking it from so doing. How can they
“cooperate” with each other to find a stable mode of coexistence?

One way to study this mathematically, suggested first in 1928 by the
English physicist Douglas Rayner Hartree, is to try to converge on a good
description of the total system by starting out with a false solution—a
mathematical description of a state known to be wrong, but easy to describe.
(For instance, you could pretend that both electrons are in simple
hydrogen-like states.) Then you see how each electron “perturbs” the other
one out of the presumed state it was in. This leads you to a different—and
probably no less fictitious—state. But at least vou’ve made progress, in that
you’ve taken into account the “first-order” effects each electron would have
on the other cne. Now you do the same thing over again—that is, you see
how the perturbed states would perturb each other. This gives you
“second-order” corrections—and so on and so on. Eventually—and this is
the beauty of the method-—the starting point of your calculations gets totally
buried, and the state converges to what is called a “self-consistent”” solution,
very much like the solutions to Robinson’s puzzle. What I mean by saying
the starting point gets “buried” is that no matter where you start, you'll wind
up at the same eventual solution—a fixed point, where further iteration has
no effect. In this solution, the two electrons are in equilibrium with- each
other and do not perturb each other. And presto—one has “solved” the
helium atom!

Of course, this type of solution is numerical, not analytic: there are no exact
formulas that come cut, only numbers. Nonetheless, that’s good enough for
most practical purposes. The Russian physicist Vladimir Fock later made a
suggestion for improving the validity of this method of calculation, which
mvolves taking into account the fact that electrons obey the Pauli exclusion
principle, a complication that Hartree had ignored. That is the reason for
the hyphenated name; however, Hartree is the inventor of the general
- principle of calculating self-consistent solutions for many-body systems.

:This idea of locking-in recurs throughout science. In Gddel, Escher, Bach,
discussed the phenomenon called renormalization—the way that elementary
particles such as electrons and positrons and photons all take each other
inito account in their very core. The notion 1s a mathematical one, but for
'good metaphor, recall how your own identity Qovﬁam on the identities of
your close friends and’ relatives, and how theirs in turn depends on yours
nd on their close friends’ and relatives’ identities, and so on, and so on. This
-was the image I described for “I at the Center” in the Post Scriptum to
Shapter 10. Another good graphic representation of this idea is shown n
igure 24-4, where identity emerges out of a renormalization process.

The tangledness of one’s own self is a perfect metaphor for
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understanding what renormalization is all about. And the best way to
imagine how you cmerge from such a complex tangle is to begin by
imagining vourself as a ‘‘zeroth-order person”—that is, someone totally
unaware and inconsiderate of all others. (Of course, such a person would
be barely a person, barely a self at all: a perfect baby.) Then imagine how
“you’” would be modified if you started to take other people into account,
always considering others as perfect babies, or zeroth-order people. This
gives a “first-order” version of you. You are beginning to have an identity,
emerging from this modeling of others inside yourself. Now iterate:
second-order people are those who take into account the identities of
first-order people. And on it goes. The final result is renormalized people:
people who take into account the identities of renormalized people. I know
it sounds circular, and indeed it is, but paradoxical it is not—at least no more
than are the fixed points of Raphael Robinson’s puzzle! “Circular” 1s not
synonymous with “paradoxical”, although many people mistakenly assume
it is. We shall re-encounter this notion of renormalized people in Chapter
30 and beyond, where it will in fact clear up some seeming paradoxes
involving cooperation and egoism.

This close connection of locking-in to the deepest essence of personhood
plays a central role also in Chapters 22 and 25, where “who” one is 1s
portrayed as emerging from a “level-crossing feedback loop”, in which a
sophisticated perceiving system perceives limited aspects of its own nature,
and by feeding them back into the system creates a type of locking-in. The
locked-in loop itself is given a name, and that name, for every such system,
s T

The idea of a system with an I, watching its own behavior, is closely related
to the wellsprings of creativity (recall the cycle underlying creativity
discussed in the Post Scriptum 1o Chapter 12, and that to Chapter 10 as well).
We will delve inio this in depth again in Chapter 23, trying to come to grips
with another seeming paradox: that of mechanizing what seems by
definition to be nonmechanical and nonmechanizable—the creative act.
Once again we'll see vicious paradox dissolve into benign cycles.

In short, locking-in—that is, convergent and self-stabilizing behavior—
will surely pervade the ultimate explanation of most mysteries of the mind.
One example is the question of memory retrieval. How do things that are
only vaguely similar to each other stir up rumblings of recollection, and
eventually trigger the retrieval of amazingly deep abstract resemblances?
One theory, best formulated and articulated by cognitive scientist Pentti
Kanerva of Stanford University, sees the initial input as a seed—a vector in
a very high-dimensional space, analogous to the seed vector that we fed into
the Robinsonizing machine. The seed is fed into memory-retrieval
mechanisms, which convert it inte an output vector that is then fed back in
again. This cyclic process continues until it either converges on a stable
fized point—the desired memory trace—or is seen to be wandering
erratically without any likelihood of locking in, tracing out a chaotic
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sequence of “points” in mind-space. The details of how this is accomplished
. in Kanerva's beautiful theory are beyond the scope of this book, but this
4 “self-propagating search” provides another remarkable example of the
many ways that locking-in can be exploited.

Closely related to memory retrieval is the problem of perception, or
pattern recognition, As I mentioned in the Post Seriptum to Chapter 4, this
central aspect of mind has been best modeled on computers in programs
. whose strategy is similar to that of Kanerva’s model: there is a superficial
9 sweep that narrows the field somewhat, followed by a deeper sweep that
: narrows it further, and so on (the “terraced scan” I described in the
postscript to Chapter 5). This bottom-up processing is complemented by
concurrent top-down processing driven not by the input, but by expectations
of what is “out there” to be recognized. The swirling activity in which
bottom-up and top-down processes seek a reconciliation with each other
leads to a gradual kind of “crystallization”, in which many small pieces of
evidence align with, and mutually reinforce, each other. The ultimate
Jjusufication for some of them resides, of course, in the raw perceptual input,
while for others of them it resides in the richness of previous experiences
stored in memory. The combination of all these mutually confirming
hypotheses results in a globally optimal interpretation of the input: an act
of recognition. Once again, locking-in carries the day.

One final example of locking-in is the subject of Chapter 27: the question
of the inevitability (or evitability) of the genetic code. This central question
about the molecular foundations of life turns out to revolve about two

distinct senses of the word “arbitrary”. I shall let that Chapter speak for
itself, however.

* % *

- In the Iniroduction, I described the space of my columns as gradually
+.-emerging as, month by month, I revealed one more dot in that space. What
-is this, if not a Poincaré map of my mental meanderings? During my
““column-writing era, my mind would light up like a monthly firefly and reveal
where it was to the outside world! I just wonder: Would the shape I was thus
tracing out turn out to be a strange attractor?

It seems appropriate that at this midpoint of the book, we have identified
unifying theme—or rather, thema, to be more faithful to the tide. Locking-in
eems to be a key to the metamagics of Snarls, of Society, of Slipping
of Strangeness, of Substrate, of Stability . . . of Survival.




