
PHYS 1901: OSCILLATIONS, WAVES & CHAOS
Lecture Notes (Part 1): Using complex algebra to solve DEs

1 Simple Harmonic Oscillator

We want to solve the differential equation

m
d2x

dt2
+ kx = 0. (1)

Instead, let’s solve the equation

m
d2z

dt2
+ kz = 0, (2)

where z is complex. It is not hard to see that if z is a solution of Equation 2 then <(z) is a solution of
Equation 1 (see the note below). We guess the solution of Equation 2 to be

z = Aei(ωt+φ).

The derivatives of z are
dz

dt
= iωz

and
d2z

dt2
= (iω)2z

= −ω2z.

Putting these into Equation 2 gives
−mω2z + kz = 0.

Hence, z is a solution of Equation 2 provided

−mω2 + k = 0,

in other words, provided
ω2 = k/m.

We therefore conclude that, provided ω2 = k/m, then <(z) = A cos(ωt + φ) is a solution of Equation 1.
This is exactly the same solution that we found previously.

Note:

We have used the fact that if z is a solution of Equation 2 then <(z) is a solution of Equation 1. We should
justify this. Write z(t) = x(t) + iy(t), where we show the time dependence explicitly. The definition of
the derivative of z is

dz

dt
= lim

δt→0

z(t + δt) − z(t)

δt

= lim
δt→0

[

x(t + δt) − x(t)

δt
+ i

y(t + δt) − y(t)

δt

]

= lim
δt→0

x(t + δt) − x(t)

δt
+ i lim

δt→0

y(t + δt) − y(t)

δt

=
dx

dt
+ i

dy

dt
.

Similarly,
d2z

dt2
=

d2x

dt2
+ i

d2y

dt2

and so the result follows because Equation 1 is linear (it only contains the first power of z and its deriva-
tives).
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2 Damped Harmonic Oscillator

We now want to add a damping term proportional to speed, which means solving the differential equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0. (3)

As before, we first solve the equation

m
d2z

dt2
+ b

dz

dt
+ kz = 0, (4)

where z is complex. Once again, if z is a solution of Equation 4 then <(z) is a solution of Equation 3. This
follows because the differential equations is linear (z and its derivatives only appear in the zeroth or first
power).

We guess the solution of Equation 4 to be

z = Ae−Btei(ω′t+φ)

= Ae[(−B+iω′)t+iφ].

The derivatives of z are
dz

dt
= (−B + iω′)z

and

d2z

dt2
= (−B + iω′)2z

= (B2
− ω′2

− 2Bω′i)z.

Putting these into Equation 4 gives

m(B2
− ω′2

− 2Bω′i)z + b(−B + iω′)z + kz = 0.

Hence, z is a solution of Equation 4 provided

m(B2
− ω′2

− 2Bω′i) + b(−B + iω′) + k = 0.

This will be true if both the real and imaginary parts of the left hand side are zero, which gives us:

m(B2
− ω′2) + −bB + k = 0 (5)

and
−2mBω′ + bω′ = 0.. (6)

Equation 6 gives
B =

b

2m
, (7)

which we then substitute into Equation 5 to obtain (after rearranging)

ω′2 =
k

m
−

b2

4m2
. (8)

We therefore conclude that z is indeed a solution of Equation 4, provided B and ω ′ satisfy Equations 7
and 8, respectively.

The real part of z is <(z) = Ae−Bt cos(ω′t + φ), which is a solution of Equation 3 under the same
conditions.
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3 Driven Damped Harmonic Oscillator

Finally, we add a sinusoidal driving term. The angular frequency, ωd, of this driving can be different from
the natural frequency of the unforced oscillator, which we have been referring to as ω. We have to solve
this equation:

m
d2x

dt2
+ b

dx

dt
+ kx = Fmax cos(ωdt). (9)

where Fmax is the amplitude of the driving force. As before, we first solve the equation

m
d2z

dt2
+ b

dz

dt
+ kz = Fmaxe

iωdt, (10)

where z is complex. Once again, if z is a solution of Equation 10 then <(z) is a solution of Equation 9.
This follows because the differential equations is linear (z and its derivatives only appear in the zeroth or
first power).

The transient solutions are complicated and depend on the initial conditions, but in steady state (once
things have settled down) it turns out that the solution is an oscillation with the frequency of the driving
force. We therefore guess the solution of Equation 10 to be

z = Aei(ωdt+φ).

The derivatives of z are
dz

dt
= (iωd)z

and
d2z

dt2
= −ω2

dz.

Putting these into Equation 10 gives

−mω2
dz + ibωdz + kz =

Fmax

A
e−iφz.

Hence, z is a solution of Equation 10 provided

k − mω2
d + ibωd =

Fmax

A
e−iφ. (11)

We can equate real and imaginary parts, which gives two equations for the two unknowns (A and φ).
However, it is easier to equate the modulus and phase of boths sides of Equation 11. In particular, we are
interested in the amplitude of the oscillation. Equating the squared modulus of boths sides of Equation 11
gives us:

(k − mω2
d)2 + b2ω2

d =

(

Fmax

A

)2

(12)

and so we arrive at
A =

Fmax
√

(k − mω2
d)2 + b2ω2

d

. (13)

We have therefore derived Equation (13.46) in Section 13.8 of the textbook by Young & Freedman (11th
& 12th Editions).
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