
 
 
 

 
CCCUUUDDDOOOSSS   MMMOOOFFF   UUUTTTIIILLLIIITTTIIIEEESSS   

UUUssseeerrr’’’sss   GGGuuuiiidddeee   
 
 

Boris Kuhlmey, CUDOS/School of Physics A-28, University of Sydney  NSW 2006  Australia 

P: +612 9036 9430  |  F: +612 9351 7726  |  E: borisk@physics.usyd.edu.au  |  W: www.cudos.org.au 

CUDOS MOF UTILITIES 

User’s Guide 

http://www.physics.usyd.edu.au/cudos/mofsoftware/ 



2

Contents

1 Introduction 3

2 Using fibre 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Installing and uninstalling fibre . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Getting started: a first simulation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 The input and output files . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 A closer look at the parameter file . . . . . . . . . . . . . . . . . . . . 6

2.4 Syntax and structure of the parameter file . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Parameter file keyword reference . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Miscellaneous keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Fibre structure compiler keywords . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Threshold keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.4 Keywords for mode seeking . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.5 Keywords for computing dispersion curves . . . . . . . . . . . . . . . 20
2.5.6 File name keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.7 Keywords relating to the algorithm . . . . . . . . . . . . . . . . . . . . 23

2.6 Structure files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Using WinField 28

3.1 Main dialog controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Advanced tools dialog controls . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Notes, tips, trouble shooting, known bugs: 31

4.1 fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 WinField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Acknowledgments 31



3

1 Introduction

The CUDOS MOF Utilities are a software package for simulating microstructured optical

fibres (or MOFs, also known as photonic crystal fibres or holey fibres) using the mutipole

method [1, 2], in a Microsoft Windows environment. The software has been designed to be

easy to use and can be downloaded for free from the internet [3]. Usage of the CUDOS MOF

Utilities is restricted to non-commercial research and teaching purposes, as detailed in the

user-licence.

The package comprises two executables, fibre.exe (which we will refer to as fibre ) and

winfield.exe (WinField ).

1. fibre is a console based application for finding MOF modes and computing their dis-

persion curves, using simple macro-language based parameter files. It can deal with

MOFs with circular inclusions in a circular matrix which may be surrounded by a jacket

or a cladding and a jacket. Its use is described in section 2.

2. WinField is a window based software for computing and visualising modal fields and

derived quantities once the modes have been found with fibre . Its use is described

in section 3.



4

2 Using fibre

2.1 Introduction

fibre is based on the multipole formulation for microstructured optical fibers described in

[1, 2]. The algorithms used are also detailed in the above references, so that we will here

concentrate on the practical use. Nevertheless, some parameters used in the files needed

by fibre are intimately connected to the algorithms used, so that the references above

might be necessary to completely understand their full meaning and impact. fibre makes

an extensive use of the symmetry properties of the simulated structure. It can also deal with

non-symmetrical structures. fibre supports automatic adjustment of parameters for finding

the fundamental mode (and its dispersion properties) of a solid core MOF with hexagonal

symmetry. However, for more complex structures the choice of the ’correct’ parameters to

find modes or compute their dispersion properties is not straightforward and one often has

to change the parameters a few times before the wanted result is found.

2.2 Installing and uninstalling fibre

To install the CUDOS MOF Utilities, unzip cudosmof.zip to a temporary folder, and double

click Install.exe. This will install the fibre software in a “CUDOS” subfolder of your “Program

Files” folder, add a “My CUDOS MOF Files” folder in “My Documents”, add links into the start

menu and associate the Fourier Bessel Coefficient Files with the WinField software.

The “My CUDOS MOF Files” folder will contain a samples.zip file containing several

commented examples of parameter files you may want to have a look at to get an idea on

the structure and keywords of parameter files.

To uninstall the software package, simply run the uninstall link in the CUDOS fibre folder

of the Start menu, or alternatively use the windows Add/Remove Software tool in the control

panel.

2.3 Getting started: a first simulation

In what follows we will assume that you have installed the fibre software package success-

fully according to the above paragraph, and that you have unzipped the samples.zip file.

In the windows Start menu, find the CUDOS MOF Utilities directory and click on Fibre

Console Prompt: This opens a command line window with current directory set to your ’My

CUDOS MOF Files’ folder.

Change the directory to the directory containing the first sample parameter file by typing

cd sample\simple hexagon <Enter>

Now type in

fibre <Enter>

This runs the simulation, using the parameters described in the parameter.txt file of

the current directory. After a few seconds a message will inform you that the simulation

terminated successfully.



5

The simulation you just run consisted in finding the fundamental mode of a simple struc-

ture with a single ring of six holes in silica.

If you look at the “My CUDOS MOF Files\samples\simple hexagon” directory with eg
Windows Explorer you will see that 12 new files were created through the simulation, among

which two .bcf files, and two .fbb files. These contain the Fourier-Bessel coefficients of

the modes found by the simulation. Right click on either of those files and select “high res

open” in the contextual menu: The WinField software opens the corresponding file, and

you will now see the structure for which the fundamental mode was computed, along with

the distribution of the axial component of the Poynting vector. At this stage you should play

around with the different controls of WinField to become familiar with the different settings.

2.3.1 The input and output files

Now let’s have a look at the other files in the folder: the first two files always have the same

names, regardless of the simulation:

parameters.txt:

This text file, the parameter file, is the input file which was initially in the folder, and which

was used by fibre to build the fibre structure, define the various parameters (eg wavelength)

and run the simulation.

errors.txt:

This text file contains comments, warnings and errors which might have occurred while read-

ing the parameter file, building the fibre structure or running the simulation. This file is useful

when debugging a parameter file.

The following file will usually be called progress.txt, unless you explicitly rename it in the

parameter file:

progress.txt:

This text file contains information on the progress of the simulation. It is useful when running

a long simulation to check what the program is currently doing.

The remaining files will have different names at each simulation. They contain the results

of the simulation.

symhex.txt:

This text file contains the definition of the fiber’s structure. In this example, the structure

was compiled from basic fibre parameters (pitch, hole diameter, number of rings of holes,

refractive indices etc.) contained in the parameter file, and the resulting structure was written

to symhex.txt. Alternatively the structure to be simulated can also be defined directly in a

structure file, in which case the structure file becomes an input rather than an output file.

symhex_results.txt



6

This text file contains an exhaustive list of all actual parameters used for the simulation.

These include the parameters defined in the parameter file, but also the default parameters

which don’t need to be defined in the parameter file, or which have been automatically ad-

justed by the program. It also contains information on all modes found, and on various events

occurring during a simulation. We will call this file the result file, it is an important file to keep

track of the details of what was done during the simulation.

symhex_C03_det.bin

symhex_C03_det.log

These two files contain the initial determinant map computed by the program to find the

modes. The .log file is a text file and can be read with a text editor or easily imported to third

party plotting software. The .bin file is a binary file containing the determinant map in full

precision and is used internally by the fibre software to avoid computing the determinant

map twice when it can be avoided.

symhex_mode_table.txt

This text file summarizes information on all modes found during the simulation. Each line

corresponds to one mode, and shows the mode’s symmetry class, ordinal number, complex

effective index, as well as the magnitude of the smallest and second smallest eigenvalues

from the eigenvalue decomposition which has given the mode.

symhex_skipped_minima.txt

This file contains the values of the effective index at which a secondary minimum of the

determinant map was found but not refined during the simulation. This file is often empty

and is rarely used, we will see when and how it can be useful in a next version of this

documentation.

symhex_L0000C03M001.fbb

symhex_L0000C04M001.fbb

symhex_L0000C03M001.bcf

symhex_L0000C04M001.bcf

These files contain the Fourier Bessel coefficients of each mode found. The .fbb files are

binary files which can only be read by the WinField software, whereas the .bcf files are text

files. You can have a look at the latter to see the magnitude of all Fourier Bessel coefficient

files. WinField can read the .bcf files as well, but only if they are in the same folder as

the original structure file, whereas .fbb files are stand-alone files, they contain the full set of

parameters related to the mode, including the structure of the file.

2.3.2 A closer look at the parameter file

Double click on parameters.txt to open the parameter file with your default text editor. The

first thing you will see are a few lines of comments, explaining the purpose of the file. In a

parameter file, comments start with an exclamation mark character and end by a new line.

After the comments, the parameter file defines the structure: the first line which doesn’t start

with an exclamation mark and which hence is not a comment, starts with



7

pitch=6.75d0

followed by an exclamation mark introducing further comments. The above example shows

the format of a class of instructions used in a parameter file, the definition statements:

keyword=value

The keyword is separated from its arguments through an equal character. Depending on

the keyword, value has to be real, complex, integer, logical or a character string. The list of

keywords and acceptable values is given in section 2.5.

In the above example, the keyword pitch designates the center to center distance be-

tween the inclusions of the fibre. Note that the value, 6.75d0, is real; the d between 6.75 and

0 is equivalent to the usual ’e’, or ’times ten to the’ in scientific notation. You may use ’e’ or

’d’ indifferently, or omit the exponent. Further, no unit of length is given, this is because of the

scale invariance of the problem. However, when material dispersion is taken into account all

dimensions are assumed to be expressed in micrometers, so the safest is to assume that all

dimensions are always expressed in micrometers.

The next line shows an example of a keyword with a complex argument

cylinder index=(1.d0,0d0)

This statement assigns the complex value 1.0 + i× 0 to the keyword cylinder index, which

sets the refractive index of all inclusions. As you can see, a complex value is expressed in

the standard notation (real part,imaginary part). It is, however, not acceptable to use a real

notation when a complex value is needed, even if the imaginary part is naught: the statement

cylinder index=1.d0

is not acceptable, it will not cause an error, but it will add a random imaginary part to the real

value.

The following two lines are self-explanatory (for details see the keyword list), we skip our

comments until the lines

Nr=1

MNr=1

These statements define the number of rings of inclusions the fiber should have around the

core, and the size of the core, we will explain them in more detail later. However, note that

they are examples of keyword taking integer arguments.

The next two lines,

no cladding

no jacket

are examples of definition keywords not taking any argument. They tell the program that the

fibre should not be surrounded by a cladding or a jacket, so that the inclusions are in bulk

material extending to infinity.

The next statement,

build fibre



8

is somewhat different from the ones we have seen so far: instead of giving the program

information, it asks the program to use the previously defined parameters to build the fibre,

ie to compile the inclusion sizes, refractive indices and distances into a complete structure.

We will call such keywords action keywords. This statement ends the structure definition

block.

The next block defines the remaining physical parameters. In the example we’re consid-

ering the only remaining parameter is the wavelength, defined by the line

lambda=1.45

The next two statements are action keywords asking the program to adjust remaining

parameters automatically:

suggest n_eff range=fundamental

suggest order=close cylinders

The first line asks the program to estimate the range of effective indices where the funda-

mental mode should be. The action keyword used takes an argument, separated by an equal

sign (=), indicating which mode we are interested in. When fibre will look for modes, it will

compute a map of the determinant over the estimated region and refine all minima found in

that region to find the modes. The second line asks fibre to estimate the order of trunca-

tion of Fourier Bessel series according to wavelength, structure and the previously estimated

range of effective indices. The action keyword used here takes an optional argument, here

’close cylinders’, indicating that the inclusions are relatively close to each other.

The next line consists of an action keyword telling fibre to save the compiled structure

into a file.

save fibre=symhex.txt

The file name is given as a character string argument, separated from the keyword by an

equal sign. When compiling a fibre structure from geometric parameters indicated in the

parameter file, one should always save the structure using ’save fibre’; failing to do so will

cause fibre to save the structure in an arbitrary file named ’INTERNAL’ without any file

extension.

We now reach the line

search modes

This action keyword tells fibre to start the simulation, using all previously defined parame-

ters.

Finally, the last line of the parameter file

end

marks the end of the parameter file, and causes the program to exit. Any lines after an end

statement are ignored. Now that you have seen a basic example of parameter file, you might

want to change the parameter file and run for example simulations for a different structure.

2.4 Syntax and structure of the parameter file

The above example should have given you a general impression on how parameter files

are structured. In this section we will see the more general syntax and structure rules of a

parameter file.



9

2.4.1 Syntax

General: No line should be longer than 128 characters. Any succession of white spaces

and/or tabulation characters (ASCII code 9) is condensed into one single white space while

interpreting the file. Leading and trailing blanks are removed, from keywords as well as

from arguments, ie you may insert any number of spaces and/or tabulations between the

beginning of the line, the keywords, the equal sign, the arguments and the comments. Blank

lines are ignored. All input text files should be in Windows ANSI or DOS ASCII encoding, and

should not contain any non-printable characters except for new line characters, tabulations

and whitespaces.

Comments start with an exclamation mark and end at the end of the line. You may add

comments after keywords and arguments on the same line. Any characters between an

exclamation mark and an end of line character are ignored.

Keywords and arguments are separated by an equal sign (=) and optionally any whites-

pace and tabulations. A keyword and its argument must be on a same line. The parts of a

keyword consisting of more than one word must be separated by at least a white space or a

tabulation, or any combination of white spaces and tabulations. Keywords and arguments
are case sensitive.

Real arguments are to be given in the common scientific notation, ’e’, ’E’, ’d’ or ’D’ marking

the exponent. For example the arguments

1.5e-3, 1.5d-03, 0.15D-2, 0.0015

are equivalent.

Complex arguments are to be given in the form

(real part,imaginary part)
with real part and imaginary part following the syntax of real arguments. Assigning a real

value (without brackets and imaginary part) to a keyword requiring a complex argument is

not valid and assigns a random value to the imaginary part of the complex value.

Integer arguments are given as usual integers.

Logical arguments take the values .true. or .false. (as in Fortran).

Character string arguments may contain white spaces and tabulations, but any se-

quence of white space or tabulation will be replaced by a single white space. A string argu-

ment starts with the first non-blank character following the equal sign and ends with the last

non-blank character preceding an exclamation mark or an end of line.

end: the end statement ends a parameter file: lines following the line of the end statement

are ignored. If a parameter file ends before an end statement is encountered, execution

stops and a warning message is written to the error file.



10

2.4.2 Structure

The general structure of a parameter file is as follows

1. Definition of a structure,

2. Definition of other physical parameters eg wavelength,

3. Definition of fibre specific parameters, eg parameters relating to the algorithm used

by fibre , such as number of points in the determinant map, thresholds, etc. Most of

these parameters have default values and don’t need to be defined unless their default

value is not suited to the specific simulation.

4. Definition of file names or file name suffixes,

5. Action keywords,

6. end statement.

A parameter file may contain different simulations: any of the steps 1 to 4 can appear after

an action keyword, redefining one or more parameters, before a new action keyword. An

example of a parameter file running two successive simulations with different parameters

is given in “My CUDOS MOF Files\samples\dispersion 2\parameters.txt”. However, when

doing so, one should make sure to redefine the file name suffixes in order to avoid that

one simulation overwrites results from the preceding simulation. (See also the ’overwrite’

keyword).

The order of definition statements between action statements is - up to a few exceptions

(see section 2.5) - not important. The order of appearance of action keywords in the param-

eter file does, however, matter, since action keywords use information previously defined by

information statements. Further, some action keywords define or modify previously defined

parameters. For example you may not ask to save a structure with the ’save fibre’ action

keyword before a structure has been defined, eg using the ’build fibre’ action keyword.

If a same information keyword is used more than once with different arguments, the

argument will take the value defined in the last occurrence of the information keyword before

encountering the action keyword. For example, if a parameter file contains

lambda=3.0

lambda=2.0

search modes

[...]

lambda=1.0

search modes

the first simulation will use lambda=2.0, the second simulation will use lambda=1.0.

If an action keyword occurs before all parameters required for the execution of the ac-

tion have been defined, the program will stop and all required parameters which remained

undefined will be listed in the error file.



11

Nr

MNr

Cladding radius

Cladding (ncl)
Jacket (nJ)

Jacket radius

Matrix

pitch

Figure 1: Example of a structure generated by the internal structure compiler. Here MNr = 2
and Nr = 5.

2.5 Parameter file keyword reference

2.5.1 Miscellaneous keywords

– end no arguments: the end statement ends a parameter file: lines following the line

of the end statement are ignored. If a parameter file ends before an end statement

is encountered, execution stops and a warning message is written to the error file.

(Synonyms: END)

– verbose =.true. [logical] Default value is .false.. If set to .true., a lot more informa-

tion will be written to the default output file. This proves useful when a mode is difficult

to find. (Synonyms: VERBOSE, Verbose)

– ! starts a comment. Comments end at the end of the line. You may add comments af-

ter keywords and arguments on the same line. Any characters between an exclamation

mark and an end of line character are ignored.

2.5.2 Fibre structure compiler keywords

Definition keywords

– central cylinder = radius [real] epsilon [complex]: This keyword takes two ar-

guments. It adds a central cylinder with radius radius and permittivity epsilon to the

structure. (Synonyms: add central cylinder)

– central cylinder radius = radius [real]: Adds a cylinder with radius radius cen-

tered on the origin to the structure. If the permittivity or refractive index of this cylinder

is not defined by central cylinder epsilon or central cylinder index, the central

cylinder’s refractive index will be the same as the refractive index of all other cylinders.



12

– central cylinder epsilon = epsilon [complex]: Sets the central cylinder’s permittiv-

ity to epsilon. If the radius of the central cylinder is not defined elsewhere, no central

cylinder will be added to the structure. (Synonyms: central cylinder permittivity)

– central cylinder index = n [complex]: Sets the central cylinder’s refractive index

to n. If the radius of the central cylinder is not defined elsewhere, no central cylinder

will be added to the structure. (Synonyms: central cylinder refractive index)

– pitch = l [real]: Sets the pitch (center to center distance) between cylinders to l.
(Synonyms: PITCH, Lambda)

– Nr = Nr [integer]: Number of rings. Sets the distance from the origin to the center

of the last hole on the x-axis to Nr×pitch. See Fig. 1. (Synonyms: nr, number of

rings, NUMBER OF RINGS)

– MNr = MNr [integer]: Number of missing rings. Sets the distance from the origin

to the center of the first hole on the x-axis to MNr×pitch. See Fig. 1. (Synonyms: mnr,
missing rings, MISSING RINGS, number of core rings)

– cladding radius = RCl [real]: Defines the cladding radius (see Fig.1). (Synonyms:
cladding_radius, CLADDING_RADIUS, Cladding radius, Cladding_radius, Cladding

Radius)

– jacket radius = RJ [real]: Defines the jacket radius (see Fig.1).

(Synonyms: jacket_radius, JACKET_RADIUS, Jacket radius, Jacket_radius, Jacket

Radius)

– No Cladding (no arguments): This keywords informs the internal structure compiler

that the structure does not have a cladding. The cladding refractive index will be set

to the refractive index of the matrix, and the cladding radius will be set to an arbitrary

value between the furthest point of all cylinders and the jacket radius. Note that when

the matrix and the cladding have same index, fibre automatically replaces the re-

flection matrix of the matrix/cladding interface by the null-matrix and the transmission

matrix between the matrix and the cladding by the identity matrix. The No Cladding

keyword supersedes definitions of cladding index and radius: if the No Cladding key-

word has been used anywhere before a build fibre statement, the structure will have

no cladding, regardless of whether the cladding’s refractive index and radius have

been defined elsewhere. (Synonyms: no_cladding, No_cladding, NO CLADDING, no

cladding, NO_CLADDING)

– cylinder radius = R [real] Sets the radius of all cylinders to R. Note that the

radius of the central cylinder can be defined separately before or after this keyword us-

ing central cylinder radius or central cylinder. (Synonyms: cylinder_radius,

CYLINDER_RADIUS, Cylinder radius, Cylinder_radius, Cylinder Radius)

– diameter on pitch ratio = q [real] Sets the radius of all cylinders to 0.5 ∗ q×pitch.

Note that the radius of the central cylinder can be defined separately before or af-

ter this keyword using central cylinder radius or central cylinder.(Synonyms:
d/Lambda, d/pitch, diameter/pitch, diameter on pitch, diameter_on_pitch)



13

– No Jacket (no arguments): This keywords informs the internal structure compiler that

the structure does not have a jacket. This keyword is only valid in combination with the

No Cladding keyword, which must be stated before the occurrence of No Jacket. The

jacket refractive index will be set to the refractive index of the cladding (and hence of

the matrix), and the cladding and jacket radii will be set to arbitrary values so that the

interfaces are beyond the cylinder furthest from the origin. Note that when the cladding

and the jacket have same refractive index, fibre automatically replaces the reflection

matrix of the cladding/jacket interface by the null-matrix and the transmission matrix

of that interface by the identity matrix. The No Jacket keyword supersedes definitions

of jacket index and radius: if the No Jacket keyword has been used anywhere before

a build fibre statement, the structure will have no jacket, regardless of whether the

cladding’s refractive index and radius have been defined elsewhere. Using No Jacket

before No Cladding will cause an error message in the error file and fibre will stop.

(Synonyms: no_jacket, No_jacket, NO JACKET, no jacket, NO_JACKET)

– jacket index = nJ [complex]: Sets the jacket’s refractive index to nJ. (Synonyms:
nj, nJ, n_J, n_j)

– cladding index = nCl [complex]: Sets the cladding’s refractive index to nCl. (Syn-
onyms: nc, nC, n_C, n_c)

– cylinder index = ni [complex]: Sets the refractive index of all cylinders to ni. Note

that the refractive index of the central cylinder can be defined separately before or after

this keyword using central cylinder index, central cylinder epsilon or central

cylinder. (Synonyms: ni, nI, n_I, n_i)

– matrix index = nM [complex]: Sets the refractive index of the matrix to nM. (Syn-
onyms: nm, nM, n_M, n_m)

Note that for keywords defining a refractive index or a permittivity, you may also use the
character strings ’silica’ (or any other text string including a capital or lowercase ’s’) to use
the Sellmeier expansion of silica to define the refractive index.

Action keywords :

– save structure = structure file name [character string]: Writes the current struc-

ture to structure file name. The part of structure file name before the last dot will be used

as the radix on which all output file names are build, unless a later use of the file name

radix redefines this radix. If no structure is loaded in memory (be it through build

fibre, load pos file or load bcf file) a warning is written to the error file and the

statement is ignored. (Synonyms: write structure, write structure file, save

fibre, save fiber)

– Build Fibre no arguments: This keyword runs the internal structure compiler. All

current structure parameters are compiled into a structure (definition, position, radius,

refractive index of all cylinders of the structure, of the cladding and the jacket). Before

running any simulation, a structure must be defined, either through the internal struc-

ture compiler or through loading a position file (with load position file or load bcf

file) (Synonyms: Build Fiber, Build Structure, build fibre, build fiber,



14

build structure, make fibre, Make Fibre, make fiber, Make Fiber, BUILD FIBER,

BUILD FIBRE, BUILD STRUCTURE, compile fibre, compile fiber)

– load structure file = structure file name [character string]: Defines a struc-

ture by loading the structure file structure file name. See section 2.6 for the syn-

tax of structure files. (Synonyms: structure file, structure, STRUCTURE FILE,

structure_file, STRUCTURE_FILE, load fibre, load structure)

Other keywords affecting the fibre structure:

– load bcf file = bessel coefficient file name [character string] See section 2.5.5

(Synonyms: load mode)

2.5.3 Threshold keywords

All keywords in this list are information keywords, and define thresholds used by the mode

finding algorithm. All threshold have default values and are hence optional. A good under-

standing of these threshold requires a reasonable understanding of the multipole method

and the root-searching algorithm described in Refs. [1, 2].

– det_mode_threshold = determinant mode threshold [real]: Defines the threshold

below which the determinant must be before an eigenvalue decomposition is com-

puted. The eigenvalue decomposition is numerically more expensive than the com-

putation of the determinant, so the eigenvalue decomposition should only be done

when there is a good chance to find a small eigenvalue. The best value of this pa-

rameter depends on the wavelength to pitch ratio, the size of the matrix, ie. on the

number of cylinders, on the Bessel expansion truncation parameters and also (but this

is negligible) on the class of symmetry. For a structure with one or two cylinders in the

irreductible sector and with the Bessel expansion going from -5 to 5, 1e-10 is a rea-

sonable value. For more complex structures or higher orders in the Bessel expansion,

it might be necessary to go up to 1e-6, and in some cases (bandgap guidance near a

band gap edge or extreme values of the wavelength to pitch ratio) values up to 1e10

are needed.

The default value of this threshold is set to 1e-10. However, when a minimum of the de-

terminant is refined by the Broyden/zooming algorithm until the precision thresholds set

for the real and imaginary parts are reached and the value of the determinant, although

being a local minimum, is not below determinant mode threshold, fibre computes an

eigenvalue decomposition for this minimum anyway. If an eigenvalue with magnitude

less than eigen-value threshold (see below) is found, fibre automatically adjusts the

determinant mode threshold to 100× the magnitude of the determinant for which the

mode was found. This avoids time to be spent in excessive refinement for the next

modes to be searched. It is therefore rare to have to adjust this threshold, since fibre

adjusts it on its own. If you want to avoid fibre to adjust this threshold automatically,

you can use the optimization=paranoid option. (Synonyms: det mode threshold,

determinant threshold)

– eigen_value_threshold = eigen-value threshold [real]: This sets the threshold be-

low which the modulus of an eigenvalue is considered to be zero, ie the value the



15

modulus of an eigenvalue has to reach before the associated eigenvector is consid-

ered to be a mode. The default value of this threshold is 1e-10, and is generally suf-

ficient for most simulations. For more complex structures (large number of rings or

large diameter on pitch ratios) you might have to increase the threshold up to 1e-8 or

1e-6. You will know when you have to change this threshold from looking at the result

file. If for a given minimum the result files mention that refining the root failed, but the

smallest eigenvalue has a relatively small magnitude compared to the second small-

est eigenvalue, you should re-run the same simulation using an eigenvalue threshold

slightly above the magnitude of the smallest eigenvalue found. Note that if you rerun

the same simulation just changing the eigen-value threshold, the determinant map will

not have to be re-evaluated, but will be loaded from the determinant file, so that the

second simulation should be much faster than the first. If you need to raise this thresh-

old, you will have to check more thoroughly that the modes you get were sufficiently

refined, through checking eg the Wijngaard test. (Synonyms: eigenvalue threshold,

eigen-value threshold)

– real_precision_threshold = real precision threshold [real]: Defines the limit pre-

cision for the real part of the effective index. The software stops refining the current

minimum of the determinant if the absolute precision on the real part of neff is less

than real_precision_threshold and no mode has been found. The default value of

this threshold is 1e-13. Lowering this threshold does not give higher precision on

the real part (the main criterion for stopping the refinement of a mode is the magni-

tude of the eigenvalue), but may cause the refinement to slow down if the determinant

mode threshold is inadequate. On the contrary, increasing this threshold may lead

to inaccurate results if the eigenvalue threshold is inadequate. It is rare one has to

change this value and it is recommended not to change it. (Synonyms: real precision

threshold, real precision)

– imag_precision_threshold = imaginary precision threshold [real]: Defines the

limit precision for the imaginary part of the effective index. The software stops refining

the current minimum of the determinant if the relative precision on the imaginary part of

neff is less than imag_precision_threshold and no mode has been found. The default

value of this threshold is 1e-6. Lowering this threshold does not give higher precision

on the imaginary part (the main criterion for stopping the refinement of a mode is

the magnitude of the eigenvalue), but may cause the refinement to slow down if the

determinant mode threshold is inadequate. It is rare one has to change this value

and it is recommended not to change it. (Synonyms: imag precision threshold,

imaginary precision threshold, imag precision, imaginary precision)

– degeneracy threshold = degeneracy threshold [real]: When symmetries are taken

into account, classes of symmetry are treated separately and eigenvalues are (except

for the rare cases of accidental degeneracies) non-degenerate. The software checks

that the ratio of the modulus of the two smallest eigenvalues is less than this thresh-

old. If this is not the case, the software does not consider that a mode has been

found and continues the quest. When symmetries are not taken into account, two-

fold degeneracies occur. The threshold is then used to correctly deal with degenerate

modes: if after an eigenvalue decomposition, more than one eigenvalues have magni-

tude smaller than the eigenvalue threshold and their ratio is smaller than the condition



16

threshold, they are considered degenerate modes. The modes then get the same or-

dinal number and are distinguished by the degeneracy number (the file names of the

Fourier-Bessel coefficient files then end with d1, d2 etc., corresponding to the degen-

eracy number). The default value for this parameter is 1e-3, and cases where this

value is inadequate have never occurred to the present day. (Synonyms: condition

threshold, condition_threshold)

– minima_threshold = minima threshold [real]: Sets the value below which a local

minimum of the initial determinant map will be refined. The default value of this pa-

rameter is 1d30, which in practice means that all minima will be refined. In some very

rare cases numerical instabilities appear associated with a diverging determinant (this

can be seen by visualizing the determinant map: the determinant then takes very large

values [of the order of 1d30 or more] and seems to fluctuate chaotically in that region),

leading to false minima with large values of the determinant. In these cases it can

save computational time to lower the minima threshold down to about 1e3. (Synonyms:
minima threshold, minimum threshold)

– upper_real_threshold = upper real threshold [real]: This threshold limits the ac-

ceptable values of the real part of the effective index for the zooming algorithm to

values such that |<(neff ) − nmax| > upper real threshold, with nmax being the largest

value of the real part of the refractive indices encountered in the structure. This is to

avoid numerical errors occurring when the effective index is too close to nmax, and to

avoid the zooming algorithm to enter an infinite loop. The default value of this thresh-

old is 1e-4. You may want to decrease this value if you are looking for modes close to

nmax, but avoid using values smaller than 1e-6 since this can lead the zooming algo-

rithm to loose an unacceptable amount of time trying to follow a valley crossing nmax.

(Synonyms: upper real threshold)

– lower_real_threshold = lower real threshold [real]: This threshold limits the ac-

ceptable values of the real part of the effective index for the zooming algorithm to

values such that |<(neff ) − nmin| > lower real threshold, with nmin being the smallest

value of the real part of the refractive indices encountered in the structure. This is to

avoid numerical errors occurring when the effective index is too close to nmin, and to

avoid the zooming algorithm to enter an infinite loop. The default value of this thresh-

old is 1e-4. You may want to decrease this value if you are looking for modes close to

nmin, but avoid using values smaller than 1e-6 since this can lead the zooming algo-

rithm to loose an unacceptable amount of time trying to follow a valley crossing nmin.

(Synonyms: lower real threshold)

– lower_imag_threshold = lower imaginary threshold [real]: This threshold limits

the smallest acceptable value of the imaginary part of the effective index for the zoom-

ing algorithm. This is to avoid numerical errors occurring when the effective index is

too close to the real axis, and to avoid the zooming algorithm to enter an infinite loop.

The default value of this threshold is 1e-15. It is rare to have to change this threshold,

but if you observe numeric instabilities or divergences in the determinant map close

to the real axis (this might occur for lossy structures) you might want to increase this

threshold. On the other hand, if you know that the imaginary part of the effective index

is going to be smaller than 1e-15, you should set the imaginary part to zero artificially



17

n_eff_0 + n_eff_width=stop_n_eff

the real axis: num_n_points+1

number of points along
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

. . . . . . . . . . . . . . . . . . . . . . . . 
n_eff_0

number of points along
the imaginary axis

num_ni_points+1

Real(n_eff)

Imag(n_eff)

Figure 2: Illustration of parameters defining the neff region in complex plane in which modes
are sought.

and search fro modes on the real axis only. (See stop n_eff and n_width on how to

do this.) (Synonyms: lower imag threshold, lower imaginary threshold )

– upper_imag_threshold = upper imaginary threshold [real]: This threshold limits

the largest acceptable value of the imaginary part of the effective index. This is to

avoid numerical errors (especially divergences) occurring when the imaginary part of

the effective index is too large. The default value of this threshold is 1e-1. It is ex-

tremely rare to have to change this threshold. (Synonyms: upper imag threshold,

upper imaginary threshold)

2.5.4 Keywords for mode seeking

– wavelength = λ [real]: Wavelength at which the simulation should be run. When

material dispersion is not taken into account, all length are relative and the wavelength

is relative to the lengths defined by the structure. When material dispersion is taken

into account, all length, including the wavelength, are assumed to be expressed in

micrometers.

Other keywords affecting this value: start_lambda.

(Synonyms: WAVELENGTH, wl, WL, lambda)



18

– n_eff_0 = neff 0
[complex]: Defines the lower left corner of the region of effective

index (in the complex plane) in which modes will be searched. By lower left corner

we mean the corner of the rectangle of the complex plane with smallest real part and

smallest imaginary part (see Fig. 2). (Synonyms: start_neff, start_index, lower

left n_eff corner)

– stop_n_eff = stop_n_eff [complex]: Defines the upper right corner of the region

of effective index (in the complex plane) in which modes will be searched. By upper

right corner we mean the corner of the rectangle of the complex plane with largest real

part and largest imaginary part (see Fig. 2). Important: start_n_eff has to be used

before stop_n_eff is used. (Synonyms: upper right n_eff corner, final n_eff,

stop n_eff, stop neff)

– n_eff_width = n_eff_width [complex]: Defines the region of effective indices in

the complex plane in which to search modes by its width: The scanning region will

go from n_eff_0 to n_eff_0+n_eff_width (see Fig. 2). (Synonyms: N_eff_width,

N_EFF_WIDTH, n_width, N_WIDTH)

Important Note: the real part of stop_n_eff and start_n_eff should always differ from
values taken by the structure’s refractive indices, or severe numerical errors could stop the
program’s execution. Indeed if neff is exactly equal to the refractive index of the matrix (or
inclusions etc.), the value zero will appear as the argument of Hankel functions, which diverge
in zero. Example: if you’re interested in finding the fundamental mode of a solid core MOF
with matrix refractive index (1.45,0), and you expect the fundamental mode to have an effective
index with real part close to 1.45, do not set the real part of stop_n_eff to 1.45, but to eg
1.449999.

– num_n_points = number_n_points [integer]: Defines the number of points par-

allel to the real axis on which the determinant is computed for the initial determinant

map. The determinant will be computed for num_n_points+1 points on each line paral-

lel to the real axis (see Fig. 2). This parameter must be greater or equal 4. Its default

value is 100. The ideal value of this parameter depends on the expected density of

modes and the width of the scanning region. The density of modes in the neff space

depends on the complexity of the structure and the wavelength (it increases with de-

creasing wavelength). If one approximately knows where a mode is (for example if a

similar structure with a smaller number of rings has been studied before) a value of 20

or even 10 for num_n_points can be enough. For a large scan or for complex struc-

tures values of 100 or 200 are more appropriate. When looking for a bandgap guided

mode, values of 500 for a range of effective indices of 1e-2 are not excessive. If this

parameter it too small, some modes might not be found, if it is too large, computing the

map will be unnecessarily slow.

– num_ni_points = num_ni_points [integer] Defines the number of points parallel

to the imaginary axis on which the determinant is computed for the initial determinant

map (see Fig. 2). The map will be computed for num_ni_points+1 points for each value

of the real part of neff . This parameter must be either 0 (if =(nwidth) = 0) or greater or

equal to 4. Its default value is 4 if =(nwidth) 6= 0 and 0 otherwise. As the scan along

the imaginary axis is exponential, a value of 4 (8 for some bandgap guided modes) is



19

generally sufficient. If the structure has a very good confinement (ie. if the imaginary

part of the effective index of the computed modes is expected to be less than 10−13),

setting this parameter to zero is not only useful but necessary.

– start_mode = first mode [integer]: Sets the first class of symmetry [4] for which

modes are searched. When modes belonging to a twofold degenerate symmetry class

are sought, at least the first of the two degenerate symmetry classes must be included

in the range of symmetry classes: If, say, classes 3 and 4 are degenerate, start_mode

can not be set to 4, but must be set to 3 to find the modes belonging to symmetry

classes 3 (and 4). (Synonyms: first mode, start mode)

– stop_mode = last mode [integer]: Sets the last class of symmetry [4] for which

modes are searched. fibre will search for modes in all classes of symmetry between

start_mode and stop_modes. (Synonyms: last mode, stop mode)

Degenerate modes are computed simultaneously, so that it does not make a difference

on computational time to ask for only one or both of two degenerate mode classes.

A determinant map is computed for each non-degenerate mode class or pair of de-

generate mode classes: computing the determinant map is the slow part of the code,

so restricting the number of symmetry classes is a good way of saving time when a

specific mode (eg the fundamental mode) is sought. When no symmetries are used,

the only valid class of symmetry is 1, so that start_mode and stop_mode must be set

to 1.

Action keywords:

– suggest n_eff range = mode [character string]: This keyword adjusts the range

of effective indices to find a specific mode specified as the argument. This has been

implemented only for solid core MOFs with C6v symmetry, no jacket or cladding, matrix

refractive index close to the refractive index of silica and low index inclusions with

refractive index around 1. The range of classes of symmetry is adjusted to the class

of symmetry of the considered mode. The argument should be one of the following

values:

– fundamental Adjusts the range of effective indices and the class of symme-

try to find the fundamental mode of the structure. (Synonyms: Fundamental,

FUNDAMENTAL, FUND, fund, fundamental mode, 1)

– second Adjusts the range of effective indices to find the second mode of the

structure. The automatic adjustment of the range of effective indices for the sec-

ond mode is experimental and should not be relied upon. (Synonyms: 2, second

mode)

Before suggest n_eff range is used, a structure (see Sec. 2.5.2) must have been

defined.

– search modes (no arguments) Runs the simulation to find the modes. Before this

keyword is used, a structure (see Sec. 2.5.2), the order of truncature of Fourier-Bessel

expansion (see order, gorder and suggest order, Sec. 2.5.7), the wavelength (see

wavelength, above), a range of effective indices (see n_eff_0, stop_n_eff, n_eff_width

and suggest n_eff range) and the classes of symmetry to search for (see start_mode,



20

stop_mode and suggest n_eff range) must have been defined. (Synonyms: modesearch,
SEARCH MODES, MODESEARCH, mode search)

2.5.5 Keywords for computing dispersion curves

– number of points = steps [integer]: Defines the number of wavelengths steps for

which to compute the mode between the first and last wavelengths. Note that when

optimization is set to fast, fibre only minimizes the determinant for each wavelength

step, without computing the whole eigenvalue decomposition. The entire eigenvalue

decomposition is then only computed when the modes are logged to a file (see number

of points between log keyword). The algorithm to compute dispersion curves uses

quadratic interpolation between the given and previously computed points or linear ex-

trapolation of the previously computed points to estimate the effective index for the

next wavelength step. The estimated effective index should be sufficiently close to the

actual value of the effective index for the Broyden part of the root finding algorithm to

converge, without the help of the much slower zooming algorithm. If you see (through a

comment in the error file or through the progress output file) that the zooming algorithm

is used while computing the dispersion, increasing (say doubling) the number of wave-

length steps will most certainly decrease the computation time. Values for this parame-

ter generally range between 50 (for small wavelength intervals or simple structures) to

several hundreds. Note that the maximum value for this parameter is 4000. If several

dispersion simulations are to be done within the same parameter file (unless they are

separated by the delete n_eff table keyword), the sum of all number of steps, added

to the number of wavelengths used to initialize the interpolation of the effective index

(through load dispersion file, load bcf file, or n_eff(lambda) statements) must

remain under 4000. (Synonyms: steps, number_of_points, numpoints)

– number of points between log = logsteps [integer]: Defines the number of wave-

length steps between two mode logs. Every logsteps, the mode will be saved to a

file. When optimization is set to fast, this also defines the number of wavelength

steps between two complete eigenvalue decompositions. It is generally not neces-

sary to have the complete set of Fourier-Bessel coefficients for every single wave-

length step, but it is good to be able to check that the mode tracked with varying

wavelength remains the right one (to avoid the consequences of mode crossing for

example). (Synonyms: number of log points, numlogpoints, number of points

between logs, number_of_points_between_logs)

– start n_width = start n_width [complex]: When starting the computation of a dis-

persion curve with only one (or zero) data points (ie the effective index of the mode for

one wavelength as defined through a single load bcf file or n_eff(lambda) instruc-

tion, or when starting a dispersion computation by defining a range of effective indices

where the mode for the first wavelength is to be found), defines the region in the com-

plex plane in which to look for the mode at the second initial wavelength step. The

width of the region is defined in an absolute way for the real part and in a relative way

for the imaginary part: the region in which the mode for the second initial wavelength is

computed is centered on the effective index for the first wavelength and is of width (real
part of start n_width, [imaginary part of start n_width]×[imaginary part of the effective



21

index for the frist wavelength]). If the resulting range of effective indices has negative

imaginary parts, it is readjusted to include positive values of the imaginary part only,

but remains of the same width.

Example: You want to compute the dispersion curve for a given mode, which you have

found for a wavelength of say 700nm. The mode has an effective index of (1.45,1e-7) at

that wavelength. You initialize the dispersion computation by using the n_eff(lambda)

statement:

n_eff(lambda)=0.7 (1.45,1e-7)

You then define the width of the region in which you expect the effective index of the

mode to be at the next wavelength:

start n_width=(1e-2,1000)

The region in which the mode for the second wavelength will be searched will be cen-

tered on (1.45,1e-7), and have a width of (1e-2,1000*1e-7)=(1e-2,1e-4). The region

would hence cover complex values in the region inside the rectangle defined by the two

opposite corners (1.45− (1e− 2)/2, 1e− 7− (1e− 4)/2) and (1.45+ (1e− 2)/2, 1e− 7+
(1e − 4)/2), which includes negative values of the imaginary part. The region is hence

rectified to the rectangle between (1.45 − (1e − 2)/2, 0) and (1.45 + (1e − 2)/2, 1e − 4),
which has the same width as the previous rectangle.

Unless the effective index has a large imaginary part (say 1e-2 or higher) it is best to

set a large imaginary part for start n_width (10 to 1e5).

The default value of this parameter is (1e-2,10).

(Synonyms: start nwidth, default nwidth, default n_width, start_width)

– start_lambda = λ0 [real] Sets the initial wavelength from which fibre will com-

pute the dispersion curve. If a single point of the dispersion curve has been given as a

starting point, λ0 should be the wavelength of that point.

Note when using dispersion and mode searching in a same parameter file: this keyword

also sets the current wavelength (see wavelength).

Other keywords affecting this value: load dispersion file. (Synonyms: start lambda,

first wavelength, first lambda, start wavelength)

– stop_lambda = λf [real]: Sets the final wavelength of the wavelength range in

which the dispersion has to be computed. Note that λf can be less or greater than λ0.

(Synonyms: stop lambda, last wavelength, last lambda, stop wavelength)

– n_eff(lambda) = λ [real] neff [complex]: This keyword takes two arguments: a

real number indicating a wavelength and a complex number being the effective index

at that wavelength. The keyword adds an entry to the dispersion table used to extrap-

olate or interpolate values of the effective index as a function of wavelength. Other

keywords used to add entries to the table of effective indices are load bcf file and

load dispersion file (see below). Note that limitations on the number of entries in

the table of effective indices apply (see number of points).

(Synonyms: n_eff_table, effective index)



22

Action keywords:

– delete n_eff table (no arguments): Deletes and resets the table of effective indices.

This keyword is useful when computing dispersion curves of different structures or dif-

ferent modes in a same parameter file. Unless this keyword is used, all previously en-

tered or computed values of neff as a function of wavelength are taken into account to

interpolate or extrapolate neff when computing a dispersion curve. (Synonyms: erase
n_eff table)

– load dispersion file = dispersion file name [character string]: Loads the file dis-
persion file name and adds its data to the table of effective indices. dispersion file name
has to be a text file with three columns of real numbers. The first column indicates a

wavelength and the two following columns represent the real and imaginary part of the

effective index of the sought mode at the indicated wavelength. Note that dispersion

output files have the correct format to be used as dispersion input files. After loading

dispersion file name, start_lambda is set to the wavelength of the last line of the disper-

sion file. Note that limitations on the number of entries in the table of effective indices

apply (see number of points).

– load bcf file = bcf file name [character string]: Loads the Fourier Bessel text

coefficient file bcf file name, loads the associated structure, and adds the wavelength

and refractive index of the mode to the table of refractive indices. Note that the file

must be a text file (ending with .bcf), not a binary file (.fbb are not valid).

(Synonyms: load mode)

– get dispersion curve (no arguments): Runs the simulation to find the effective index

of a mode as a function of wavelength. What fibre does depends on the content of the

refractive index table (see : n_eff(lambda), load dispersion file, load bcf file)

• If the table contains two ore more entries, fibre directly enters the algorithm for

tracking a mode with varying wavelength, using the table of refractive indices to

extrapolate or interpolate first guesses of the refractive index for each new wave-

length step. The table of refractive indices is completed after each new wavelength

step.

• If the the table contains exactly one entry, fibre tries to find the mode for a wave-

length close1 to the only wavelength of the table of refractive indices (the latter

should be equal to start_lambda), in a wavelength range defined as explained

for the start_width keyword. If one mode is found, its effective index and wave-

length are added to the table of effective indices and the algorithm for tracking

a mode with varying wavelength is entered. If more than one mode is found, a

warning message is written to the error file, the mode with largest real part of the

effective index is added to the table of effective indices and the algorithm for track-

ing a mode with varying wavelength is entered. If no mode is found, execution is

aborted.

• If the table is empty, and the data needed to initiate a search for modes is defined,

fibre search for the modes as explained for the search modes keyword, then

1The wavelength for this initial step is defined by start_lambda+0.01 × (stop_lambda-

start_lambda)/number_of_points



23

continues as above. If more than one wavelength is found during the initial search

for modes, the mode with largest real part of the effective index is used for the

further steps.

(Synonyms: compute dispersion curve, dispersion, lambda track, wavelength track)

2.5.6 File name keywords

– verbose file = file name [character string]: Redefines the progress file name

to file name. By default, the progress file is called progress.txt. Its content depends

on the value of verbose. Each time this keyword is used, subsequent verbose output

is directed to file name. You can redefine the progress file name at any time in a

parameter file. You can hence have different progress files with different names for

different simulations in a same parameter file. (Synonyms: progress file)

– file suffix = suffix [character string]: The characters defined by this keyword

are added to all output file names (except the error and progress files). A typical

file name for an output file is <file name radix><suffix><file type, mode and wave-
length dependent suffix>.<file dependent extension>. The default value for this param-

eter is the empty string. (Synonyms: file extension, file_extension, pers_name,

file_name_extension, file name extension)

– file name = file name radix [character string]: Defines the file name radix on

which all output file names (except the error file and the verbose file) are based, as

described for file suffix. By default the file name radix is the name of the last

structure file (as saved or as loaded) without the .txt extension. If no structure file

name has been defined, the default radix is INTERNAL. (Synonyms: file name radix,

output file name radix)

– overwrite =overwrite [logical]: fibre automatically generates a number of output

files with various names. By default, if a file with the same name as an output file exists

prior to execution of fibre, it will be deleted and overwriten. This can lead to loss of

data if one omits to change file name extensions or names between two simulations.

If this flag is set to .false., the program will stop before overwriting any files. If set to

.true. (default value), overwriting is allowed and will solely cause a warning in the error

file. Note that the ’errors.txt’, determinant map and temporary files are not affected by

this option and will always be overwritten.

2.5.7 Keywords relating to the algorithm

– optimization = option [character string], where option is one of the following:

– paranoid Optimizes execution for maximum accuracy, with no compromises or

self adjustment of parameters. This does not necessarily lead to safer execution,

or more accurate results. This mode, intended for debugging and for modes which

are extremely delicate to find, is generally not recommended. In this mode the

determinant mode threshold is not changed from its initial value by the program,

and when computing dispersion curves an eigenvalue decomposition is computed

for each wavelength step.



24

– normal Normal execution mode. The eigenvalue threshold is updated auto-

matically, and when computing dispersion curves an eigenvalue decomposition is

computed for each wavelength step. This is the default value.

– fast Optimizes execution for speed: The eigenvalue threshold is updated auto-

matically, and when computing dispersion curves an eigenvalue decomposition is

only computed when a mode is saved to a file (see number of points between

log.) This option is not supported for the search of modes (search modes key-

word).

Note that the optimization option also affects the default optional argument of suggest

order.

– skip real borders val [logical]: val is either .true. (default) or .false. . When true,

minima on the edges parallel to the imaginary part of the effective index region over

which the initial determinant map is computed are ignored. When false, all minima, in-

cluding those on the latter edges, are refined. Minima on the edges of the determinant

map are most likely not to be true local minima but points in valleys with minima far out-

side the region of effective index of interest. It is recommended to keep this parameter

to .true.: when set to .false. a lot of time can be lost trying to track down the minium of

the mentioned valleys. (Synonyms: skip_real_borders)

– order = order [integer]: Sets the order of truncature of the Fourier-Bessel expan-

sions for all cylinders.

(Synonyms: ORDER, Order)

– cladding order = order [integer]: Sets the order of truncature of the Fourier-

Bessel expansions for the cladding and the jacket. (Synonyms: gorder, GORDER,

Gorder, Cladding Order, CLADDING ORDER, corder, Corder, CORDER)

Action keywords:

– suggest order = option [character string]: Asks fibre to evaluate automatically

the order of truncature needed for the cylinders and for the jacket and cladding. In other

words, using this keyword sets the parameters order and cladding order automati-

cally. The choice of the order of truncature is based on [2] and our further experience.

An important quantity for the choice of the order of truncature is the largest argument of

Bessel and Hankel functions occurring during the simulation. The latter is proportional

to the difference between effective indices of the modes and refractive indices of the

structure, to the wavenumber in vacuum 2π/λ and to the longest distance occurring

during the simulation. The longest distance to occur during the simulation is basically

the longest distance between any two different centers of cylinders, however, this leads

almost always to overestimates of the order of truncature. fibre lets the user choose

which distance to take into account to evaluate the order of truncature, through the

choice of option which is one of the following. Here we introduce λ, the wavelength as

defined prior to the occurrence of the suggest order keyword, and ∆nmax, the maxi-

mum magnitude of the difference between all refractive indices in the structure and the

effective index anywhere in the effective index range to be scanned:



25

– fast : (default value when optimization is set to fast) optimizes the choice of

the order of truncature for speed: results are generally inaccurate, but can give a

good idea of where to look for what mode in subsequent more precise simulations.

With this setting, order is defined by 2π/λRmax∆nmax where Rmax is the maximum

radius of all cylinders. (Synonyms: FAST)

– normal : This is the default setting if optimization is set to normal. The result-

ing choice of the order of truncature, based on the radius of cylinders, gives good

accuracy if the cylinders are not too close to each other. With this setting, order
is defined by 1.5 × 2π/λRmax∆nmax + 1 where Rmax is the maximum radius of all

cylinders. (Synonyms: NORMAL)

– close cylinders : Same as normal, but adds 2 to the value of order. This is a

safe choice if the cylinders are close to each other (eg diameter on pitch ratios

larger than say 0.5 for C6v structures).

– second nearest neighbour : Uses twice the minimal distance between cylin-

ders to evaluate order. With this setting, order=1.5×2π/λ2×dmin∆nmax +1 where

dmin is the shortest distance between the centers of any two cylinders. (Synonyms:
second neighbour)

– core : Uses the distance rcore between the origin and the center of the closest

cylinder, or if a cylinder is centered on the origin, the radius of that central cylinder.

With this setting, order=1.5 × 2π/λ2 × rcore∆nmax + 1.

– average : Uses the average distance < d > between cylinders. With this setting,

order=1.5 × 2π/λ2× < d > ∆nmax + 1.

– rigorous : Uses the actual longest distance dmax occurring between any two in-

terfaces (including the jacket) or center of cylinders. With this setting, order=1.5×
2π/λ2 × dmax∆nmax + 1.

– precise : (default value when optimization is set to paranoid) Same as rig-

orous, but adds 3 to the obtained value of the order of truncature. (Synonyms:
precision, PRECISE, PRECISION, accurate, accuracy, paranoid, PARANOID)

For cladding order, the distance d used is either the jacket radius (if the refractive

indices of the cladding and the jacket are different) or the cladding inner radius (if

the refractive indices of the jacket and cladding are the same but are different from

the refractive index of the matrix), the only difference between the different options is

the corrective factor. The order of truncature of the Fourier-Bessel expansion for the

cladding and the jacket is

• fast option: 2π/λ∆nmaxd + 1

• paranoid option: 1.5 × 2π/λ∆nmaxd + 1

• all other options: 2 × 2π/λ∆nmaxd + 1

Note that all options beyond close cylinders usually lead to orders of truncature

much higher than what is needed for reasonable accuracy. Further, increasing the

order of truncature does not necessarily lead to more accurate results: indeed, the

numerical precision on Bessel functions decreases with their order, and the accuracy

of the determinant diminishes with increasing matrix size.

(Synonyms: eval order, auto order)



26

6 symmetry C6v

2 number of cylinders in the irreductible sector

5 order of truncature for cylinder Bessel expansion

72 order of truncature for cladding Bessel expansion

(2.102,0.0d+0) matrix epsilon

(1.0d0,0.0d0) exterior epsilon

6.50d0 6.655172d0 cladding inner and outer radius

(1.315d0,0.0d+0) cladding epsilon

0.0d0 0.0d0 0.2d0 (1.0d0,0.0d0) 0 0 cylinder 1: r,theta,radius,epsilon, symmcat,axis

1.0d0 0.314159265358d0 0.2d0 (1.0d0,0.0d0) 0 0 cylinder 2: r,theta,radius,epsilon, symmcat,axis

Table 1: Example of a structure file

2.6 Structure files

The structure file details the structure: position, size and refractive index of inclusions,

cladding and jacket. The order of truncature of the Bessel expansions are also given in

this file, but can be redefined in the parameter file. The structure file is a text file which can

be edited with your usual text editor. Table 1 gives an example of the structure of the file

(each line of the table should be a line of the file). The file has a header defining global

parameters and the cladding structure:

1. Symmetry: symmetry class, 0 if no symmetries are used, 1 for C1v, 2 for C2v, 4 for C4v,

6 for C6v, 8 for C8v, 10 for C10v. Other symmetries are not yet implemented.

2. Number of cylinders in the irreductible sector (integer)(ie the smallest angular sector

given for that symmetry in Ref. [4]) The irreductible sector is (0,π/10) for C10v , (0, π/6)

for C6v, (0, π/2) for C2v, (0, π) for C1v , the entire plane if no symmetries are used.

3. Order of truncature for Fourier Bessel expansions around cylinders (integer): The

Fourier-Bessel expansion around each cylinder will be truncated from -order to order

4. Order of truncature for Fourier-Bessel expansion in the cladding and jacket (also called

gorder, integer): The Fourier-Bessel expansion on the cladding and the jacket will be

truncated from -gorder to gorder

5. Matrix epsilon (complex) : permittivity of the matrix (or background)

6. Jacket epsilon (complex) : permittivity of the jacket.

7. Cladding inner (real) and outer radius (real) (the latter is also called the jacket radius).

If no cladding is used, set the cladding and jacket permittivities to a same value, set the

inner radius to be the jacket radius and give an arbitrary outer radius (say, for example,

inner radius+1.0).

8. Cladding epsilon (real) : permittivity of the cladding. If no cladding is used, give the

same permittivity as for the jacket. If the structure should have no jacket and no

cladding, set the matrix, cladding and jacket permittivities to a same value.



27

9. After the header follows the list of cylinders, with following specifications:

(a) r, theta (real): cylindrical coordinates of the center of the cylinder, theta is in rad

(b) radius (real): radius of the cylinder

(c) epsilon (complex): permittivity of the cylinder

(d) symm_cat (integer):

• -1 if no symmetries are used:

• 0 if the cylinder is located at the origin

• 1 if the cylinder is on the border of the irreductible sector.

• 3 if the cylinder is not on the border of the irreductible sector.

(e) axis (integer):

• 0 : if the cylinder is at the center or not on the border

• 1 if the cylinder is on the θ = 0 axis

• 2 if the cylinder is on the other border of the irreductible sector (for example

θ = π/6 for a C6v structure)

Parameters on a same line are separated by blanks, tabulations and/or commas. Com-

ments can be added at the end of each line. Additional blank lines between parameters

are not permitted. Splitting the lines in the cylinder list is possible if no comments are

added.

When the permittivities of the cladding and the matrix are equal, fibre replaces the

reflection and transmission matrices by the null matrix and the identity matrix respec-

tively. The same applies to the cladding/jacket interface. However, setting the cladding

inner and outer radii to be equal is not a valid way of “suppressing” the cladding, and

may lead to division by zero operations.

If the Sellmeier equation of Silica should be used to compute a permittivity according to

the wavelength, one has to set the concerned permittivity(ies) to (-1.0d0,-1.0d0). Note

that in this case all dimension become absolute: the dimensions given in the structure

file and in the parameter file (for the wavelength) are then in µm.



28

3 Using WinField

WinField is a software to compute and analyse fields from their Fourier-Bessel expansions,

using a dialog based user interface for Microsoft Windows.

3.1 Main dialog controls

– open file... button: Click here to open the standard Windows file open dialog and

select a .bcf or .fbb file to open.

– refresh button: updates the field representation (and runs the field computation when

needed)

– resolution text edit: number of points along each axis on which the field is computed.

– view pos file... button: Click here to open the standard Windows file open dialog and

select a structure (or cylinder position) file (.txt extension) for visualization.

– More options... button: Opens the advanced tools dialog, including controls to com-

pute the Bloch transform, the Wijngaard test, the alternate method to compute losses,

and controls for exporting field data in various formats (various formats of raw data or

bitmap)

– field selector : The three central drop down lists select the field (Poynting vector S,

fields H or E), the component (Cartesian x, y or z, cylindrical r or θ, norm, Bloch trans-

form, or structure), and the part of the component (real part, imaginary part, magnitude,

phase or magnitude in log scale) to visualize.

– zoom group: Enter a zooming coefficient and click the zoom now button to zoom on

the current coordinate.

– current coordinates group: sets the center for zooming. You can enter the coor-

dinates by clicking on the field map. Clicking on the field map will also give you the

z-coordinate, that is the value of the selected part / component / field at the point

clicked, and show you which part of the structure you clicked on (in the status bar on

the bottom).

– color range group: lets you chose whether you want to use the extremal values of

the current part / component / field as the limits of the color scale, or if you prefer to

set the limits of the color range manually (uncheck use extremal values and enter

the minimum and maximum values). You can also inverse the color scale, or use grey

scale representation. If you check the Flux norm box, WinField will use a consistent

flux based normalization, useful to compare field densities.

– interpolate uses bi-cubic interpolation to give a smoother representation of fields,

and enables you, with the contour check box next to it, to draw filled contour plots.

– no cladding and no jacket check boxes: hide the field in the cladding and jacket,

and adjust the color range accordingly.



29

– ignore cladding performs all field computations as if the cladding and jacket didn’t

exist (useful - and automatically set- when the cladding and jacket index are the same

as the matrix index).

– draw cylinders and fill cylinders check box: enables you to draw the contour of the

cylinders and optionally fill them.

3.2 Advanced tools dialog controls

The ’Advanced Tools’ dialog appears when clicking on the ’more options...’ button in the main

dialog.

– Field group: Controls in this group enable you to write the computed fields to files in

various formats. The file format can be selected in the Format drop down list. Once

you have chosen the file format, click on the Write file... button to open a standard

windows ’Save As’ dialog. File formats are as follows:

– selected part text xyz (*.txt) Writes the selected part (real, imaginary, abs,

phase, log(abs)) of the selected component and field (as selected in the main

dialog) to a text file in three columns separated by spaces. The first two columns

are the x and y coordinates, the third column is the value of the selected part /

component / field. Note that by default no file extension is added to the file name,

so that you have to type in the desired file extension in the ’Save As’ dialog.

– selected complex field text xyz (*.txt) Writes the selected component and field

(as selected in the main dialog) to a text file in four columns separated by spaces.

The first two columns are the x and y coordinates, the third and fourth column

are the real and imaginary part of the selected component and field. Note that by

default no file extension is added to the file name, so that you have to type in the

desired file extension in the ’Save As’ dialog.

– Selected part text matrix (*.txt) Writes the selected part (real, imaginary, abs,

phase, log(abs)) of the selected component and field (as selected in the main

dialog) to a text file in matrix format. The file contains a resolution×resolution

matrix of numbers representing the value of the selected part/component/field for

each pixel. You can write the x,y coordinates associated with each pixel in the

same format using the x,y coor matrix (*.txt) option (see below). Note that by

default no file extension is added to the file name, so that you have to type in the

desired file extension in the ’Save As’ dialog.

– selected complex field text matrix (*.txt) Writes imaginary and real parts of the

selected component and field (as selected in the main dialog) to a two text files

in matrix format. The names of the matrix file containing the real and imaginary

part are formed by adding ’_r’ and ’_i’, respectively, to the file name selected

in the ’Save As’ dialog. The files contains a resolution×resolution matrix of

numbers representing the real/imaginary part of the selected component and field

for each pixel. You can write the x,y coordinates associated with each pixel in the

same format using the x,y coor matrix (*.txt) option (see below). Note that by

default no file extension is added to the file name, so that you have to type in the

desired file extension in the ’Save As’ dialog. This format is particularly suitable for

importing the complex fields in matrix manipulating software eg Matlab or Octave.



30

– x,y coor matrix (*.txt) Writes the x and y coordinates of each pixel in matrix form

in two different files. The names of the matrix file containing the x and y coordi-

nates are formed by adding ’_x’ and ’_y’, respectively, to the file name selected

in the ’Save As’ dialog. The files contains a resolution×resolution matrix of

numbers representing the x/y coordinates of each pixel. Note that by default no

file extension is added to the file name, so that you have to type in the desired file

extension in the ’Save As’ dialog.

– as seen Windows Bitmap(*.bmp) Writes the exact content of the WinField ’s

field window to a windows bitmap file you can open with any Windows image editor

(eg Paint, Windows Picture and Fax viewer etc.). If no file extension is added in

the ’Save As’ dialog, the .bmp extension is automatically added.

– Wijngaard test group: Used to perform Wijngaard tests (see Eq. (4), Ref. [2]) around

inclusions or at the cladding boundary. It can also check the continuity of fields at the

cladding and jacket boundaries. To compute the Wijngaard integral W around a given

inclusion, enter the number of points used to compute the integral (number of points
edit box) click on the desired inclusion (in the field plot window), select the field (Ez

or Hz) then click the Check it! button. If you check the Write File check box, you

can also write the local and Wijngaard fields as a function of angle at the boundary of

the inclusion to a file. The resulting file contains 4 columns of numbers, the first is the

angle (radians), the second the local field, the third the value of the field resulting from

the Wijngaard expansion, and the fourth is the magnitude of the difference between

the second and third column.

When selecting the Jacket radio button, the local and Wijngaard fields are replaced by

the fields just inside and just outside the jacket boundary respectively. When select-

ing the Cladding continuity radio button, the Wijngaard field is the Wijngaard field

expansion at the matrix/cladding boundary, and the local field results from the field

expansion in the cladding at the matrix/cladding boundary.

– Loss group: Used to compute the losses and imaginary part of the effective index

with the perturbative formula from Eq. (10) in Ref.[2]. To compute the surface integral

in that equation, WinField uses the fields computed for the field representation. For

accurate results, resolution should hence be at least 150, and the current view should

include all inclusions. Note that even with a perfect numerical integration, the relative

error obtained through this method is of the order of the largest W Wijngaard integral

of all inclusions. The contour integral is computed using Number of points points on the

circle centered on the origin and with radius specified by the user. If the radius if left to

zero, 0.99× the cladding radius is used.

– Effective Core Area group: used to compute effective areas. The conventional effec-

tive area formula is used, but the user can select which field and component to use in

the integrals. Checking the normalize to pitch check box displays the result divided

by the pitch squared. (Note that the algorithm extracting the pitch works properly only

with C6v structures). Again, numerical integration relies on the fields previously com-

puted for displaying fields, and hence the accuracy of the effective area will depend on

resolution and the current viewport.



31

– Bloch Transform group: is used to compute the Bloch transform as defined in Ref [5].

The field used for the Bloch transform can be selected either in this group or with the

field drop-down list in the main dialog. The resolution to be computed and displayed

for the Bloch transform can be defined separately from the resolution for the fields. The

Order edit box lets you select the order of the Bloch transform. If you enter a value

greater than the truncation order of the Fourier-Bessel series, the total Bloch transform

will be displayed.

– Shoz Colour Scale displays the colour scale currently in use.

4 Notes, tips, trouble shooting, known bugs:

4.1 fibre

• Computer slows down and becomes unusable when fibre is used. By default, fibre is

run with normal priority. Since fibre is computationally demanding, this results in a

slowdown for other applications. To avoid this, you can start the simulation using

start /low fibre

or

start /belownormal fibre .

This will run fibre with a lower priority. Alternatively, you can redefine the priority using

the Windows Task Manager.

• fibre causes a numerical error, but the effective index region does not overlap any of the
structure’s refractive indices. Check that there are no ’fictious’ inclusions, ie inclusions

with same refractive index as the surrounding matrix.

4.2 WinField

• In a viewport symmetric around the origin, if the resolution is set to an odd number

of points, the central pixel will correspond to the origin of the plane, for which some

components of some fields may be undefined in the analytic internal representation of

the fields used by WinField . This results in a black pixel at the centre of the picture.

To avoid this, set resolution to an even number, or slightly shift the viewport.

• If you try to load a .bcf associated with a structure file which defines a symmetry

different from the symmetry used in the .bcf file, WinField will stop.

5 Acknowledgments

The software as it is was written by Boris Kuhlmey. The initial draft of software which has

evolved into the CUDOS MOF Utilities was written during his PhD studies under the super-

vision of Gilles Renversez, Ross McPhedran, Daniel Maystre, and de facto also C. Martijn



32

de Sterke. Tom White wrote a similar piece of software almost simultaneously as part of

his honours project, and although the current version of the software doesn’t include code

from Tom White, it certainly has benefited a lot from his pioneering work. After his Phd Boris

Kuhlmey joined CUDOS, and rewrote a substantial part of the code to make it more stable

and more user-friendly with the aim of making it publicly available. Prof. Ross McPhedran

and Prof. C. Martijn de Sterke are also with CUDOS, and Dr. Gilles Renversez and Dr. Daniel

Maystre are with the Institut Fresnel, UMR 6133, Marseille, France. Tom White is currently

finishing his PhD with CUDOS/the University of Sydney. Boris Kuhlmey would also like to ac-

knowledge the support of the system administrators of both the School of Physics/University

of Sydney (Dr. Sebastian Juraszek, Dr. Tony Monger and George Shan) and the Institut

Fresnel (Frederic Forestier).

This work was produced with the assistance of the Australian Research Council under

the ARC Centres of Excellence Program, and has benefitted from travel support provided by

the French and Australian governments under the PICS/IREX and cotutelle schemes.

References

[1] T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke,

and L. C. Botten. Multipole method for microstructured optical fibers. I. Formulation. J.

Opt. Soc. Am. B, 19(10):2322–2330, 2002.

[2] B.T. Kuhlmey, T.P. White, G. Renversez, D. Maystre, L. C. Botten, C.M. de Sterke, and

R.C. McPhedran. Multipole method for microstructured optical fibers. II. Implementation

and results. J. Opt. Soc. Am. B, 19(10):2331–2340, 2002.

[3] http://www.physics.usyd.edu.au/cudos/mofsoftware/.

[4] P. R. McIsaac. Symmetry-induced modal characteristics of uniform waveguides-I: Sum-

mary of results. IEEE Trans. Microwave Theory Tech., MTT-23:421–429, 1975.

[5] B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke. Bloch method for the analysis of

modes in microstructured optical fibers. Optics Express, 12(8):to be published, 2004.



Index

MNr, 12

Nr, 12

R, 12

RCl, 12

RJ, 12

λ, 17, 21

λ0, 21

λf, 21

nCl, 13

nJ, 13

nM, 13

ni, 13

q, 12

neff , 21

neff 0
, 18

.bin file, see determinant files

.log file, see determinant files

.true., 11

_results.txt, see result file

action keyword, 8

argument, 9

character string, 9

complex, 7, 9

integer, 9

logical, 9

real, 7, 9

real, used as complex argument, 7

average, 25

bcf file name, 22

bessel coefficient file name, 14

Bitmap, 30

Bloch Transform, 31

Bloch transform, 28

build fibre, 8

Build Fibre, 13

central cylinder, 11

central cylinder epsilon, 12

central cylinder index, 12

central cylinder radius, 11

cladding index, 13

cladding order, 24

cladding radius, 12

close cylinders, 25

color range, 28

comments, 6, 9

core, 25

current coordinates, 28

cylinder index, 7, 13

cylinder radius, 12

definition statements, 7

degeneracy threshold, 15

delete n_eff table, 22

det_mode_threshold, 14

determinant files, 6

determinant mode threshold, 14

diameter on pitch ratio, 12

dispersion file name, 22

draw cylinders, 29

eigen-value threshold, 14

eigen_value_threshold, 14

end, 8, 9, 11

epsilon, 11, 12

error file, 5

errors.txt, see error file

exponent, 7

fast, 24, 25

Field, 29

field selector, 28

file name, 23

file name radix, 23

file suffix, 23

first mode, 19

Fourier-Bessel coefficients files

binary, 6

text, 6

fundamental, 19

get dispersion curve, 22

ignore cladding, 29

imag_precision_threshold, 15

imaginary precision threshold, 15

Installing fibre , 4

33



34

interpolate, 28

jacket index, 13

jacket radius, 12

keywords

order, 10

l, 12

lambda, 8

last mode, 19

load bcf file, 14, 22

load dispersion file, 22

load structure file, 14

logsteps, 20

lower imaginary threshold, 16

lower real threshold, 16

lower_imag_threshold, 16

lower_real_threshold, 16

material dispersion, 7

matrix index, 13

minima threshold, 16

minima_threshold, 16

MNr, 7, 12

mode, 19

mode table file, 6

More options..., 28

n, 12

n_eff(lambda), 21

n_eff_0, 18

n_eff_width, 18

No Cladding, 7, 12

no cladding, 28

No Jacket, 7, 13

normal, 24, 25

Nr, 7, 12

num_n_points, 18

num_ni_points, 18

number of points, 20

number of points between log, 20

number_n_points, 18

open file..., 28

optimization, 23

option, 23, 24

order, 24

overwrite, 23

parameter file, 5

structure, 10

syntax, 9

parameter file(, 6

parameters.txt, see parameter file

paranoid, 23

pitch, 7, 12

precise, 25

progress file, 5

progress.txt, see progress file

radius, 11

real precision threshold, 15

real_precision_threshold, 15

refresh, 28

resolution, 28

result file, 6

rigorous, 25

save structure, 13

scale invariance, 7

search modes, 8, 19

second, 19

second nearest neighbour, 25

skip real borders, 24

skipped minima, 6

start n_width, 20

start_lambda, 21

start_mode, 19

steps, 20

stop_lambda, 21

stop_mode, 19

stop_n_eff, 18

structure file, 5, 8

structure file name, 13, 14

suffix, 23

suggest n_eff range, 8, 19

suggest order, 8, 24

Uninstalling fibre , 4

upper imaginary threshold, 17

upper real threshold, 16

upper_imag_threshold, 17

upper_real_threshold, 16

val, 24



35

verbose, 11

verbose file, 23

view pos file..., 28

wavelength, 17

Wijngaard test, 15, 28, 30

zoom, 28


