
Chapter 12

Earth’s Bow Shock and

Magnetosheath

Aims and Learning Outcomes

The Aim of this Chapter is to explore in more detail the physics of fast mode shocks
and to introduce the physics of planetary bow shocks and magnetosheaths. This
physics links the solar wind with planetary magnetospheres. The emphasis here
is on Earth’s bow shock and magnetosphere, although the same ideas apply much
more widely, both to other magnetospheres but also to travelling shocks.

Expected Learning Outcomes. You are expected to be able to

• Describe and explain qualitatively why shock waves and magnetosheaths de-
velop and what their roles are.

• Describe and explain with reference to the Rankine-Hugoniot equations what
the observational signatures of MHD shocks are.

• Understand and explain how the shape and location of planetary bow shocks
should vary with the upstream solar wind conditions.

• Describe some purely kinetic aspects of fast mode shocks and explain why
they are inconsistent with simple MHD or fluid theory.

• Understand the qualitative physics of gyrating ions and the cross-shock po-
tential and be able to use it to understand aspects of the physics of planetary
bow shocks and magnetosheaths.

• Explain qualitatively why the bow shock and magnetosheath are abundant
sources of plasma waves and describe some of their consequences.

12.1 Basic Physics of the Bow Shock

The solar wind is both super-Alfvenic and supersonic, with Alfven Mach number
MA = vsw/VA and sonic Mach number MS = vsw/cs both typically ∼ 8. What
happens when the solar wind encounters an obstacle such as a planet’s magnetic
field, atmosphere or solid surface? In each case the flow must be deflected around
the obstacle, either by Lorentz forces or by collisions (mediated by electromagnetic
forces). Information on the flow’s deflection, however, cannot reach the upstream
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plasma via the standard (small amplitude) MHD waves - since the flow is super-
Alfvenic and supersonic. Accordingly the deflection must be accomplished by an
MHD shock wave.

Figure 12.1 illustrates the relevant plasma regions: the bow shock, which slows,
compresses, heats and deflects the solar wind flow; the magnetosheath, in which
the shocked solar wind is deflected further around the obstacle and eventually ac-
celerated back up to the solar wind speed (downstream from Earth), eventually
merging back into the solar wind where the shock weakens and disappears; the
magnetopause, which separates the magnetospheric plasma from the shocked solar
wind plasma; and the foreshock upstream of the shock but downstream of the tan-
gent magnetic field lines. The characteristic shapes and boundaries are qualitatively

Figure 12.1: Schematic of Earth’s bow shock, magnetosheath, and magnetopause
[Cravens, 1997].

familiar from the bow waves of ships, bullets, supersonic jets etc.
Qualitatively, a bow shock is just a nonlinearly steepened bow wave. An impor-

tant aspect of this point is that the propagation speed of many wave modes depends
on the wave amplitude (the MHD fast and slow modes and the whistler mode being
examples); modes for which the propagation speed increases rapidly enough with
wave amplitude can steepen nonlinearly (due to the intense parts of a wave packet
piling up) and form shocks and other nonlinear structures such as solitons. One
basic difference between solitons and shocks is that shock transitions depend intrin-
sically on dissipation and an increase in energy across the shock, contrary to the
situation for solitons. A shock balances wave nonlinearity against dissipation while
a soliton balances the nonlinearity against wave dispersion.

The position and shape of the bow shock depend on the ram pressure

Pram = ηv2

sw , (12.1)

Alfven and sonic Mach numbers, and the angle θ between the solar wind velocity
and magnetic field in the solar wind. This can be seen by writing down the MHD
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equations in conservative form and then manipulating them. In conservative form
the MHD equations can be written:

∂

∂t
(η) + ∇ · (ηv) = 0 ; (12.2)

E = −v ×B ; (12.3)
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Normalising throughout by v = v0v
′, η0, B0, etc., in time-invariant systems these

equations can be rewritten as
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0
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From Eqs (12.6) – (12.9) it can be seen that the overall ram pressure Pram = η0v
2

0

becomes a scale factor for the system and that the equations are otherwise only func-
tions of MA0, MS0, vA/c, and the angular variables. This is very important because
it means that widely applicable results can be obtained using an understanding built
up from a few calculations with different Pram, MA, MS, and angular variables.

The position and shape of Earth’s bow shock, as well as the nature of the shock
transition, depend on Pram, MA, MS , and the angle θ between the upstream flow
velocity and magnetic field [e.g., Spreiter et al., 1966; Cairns and Lyon, 1995]. The
overall scale of the bow shock - magnetopause system is obtained by balancing
the solar wind ram pressure against the magnetic pressure of Earth’s dipole at the
magnetopause, i.e.,

η0v
2

sw,0 ∼
B2(rmp)

2µ0

∝ A r−6

mp . (12.10)

That is, the standoff distances for the magnetopause and bow shock (and by ex-

tension their transverse scales) vary as P
−1/6

ram . Thus, as expected from intuition,
higher ram pressures compress the magnetosphere and bring the bow shock closer
to Earth, while lower Pram lead to the opposite effects.

The effects of variations in MA and MS are also relatively easy to see qualita-
tively. For lower Mach number the wave speed is larger relative to the flow speed,
so that a wave will travel further upstream in a given nonlinear steepening time,
implying that the shock will be found further upstream. Thus, for high MA the
shock is closer to Earth and for low MA it moves further from Earth. Changes in
shock shape are also easy to understand based on the concept of the Mach cone
(Figure 12.2), which is the locus of the maximum extent of a disturbance moving
away from the obstacle at the wave speed. The Alfven Mach cone angle is given by

θA = sin−1

(

VA

vsw

)

= sin−1(M−1

A ) . (12.11)
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Figure 12.2: A disturbance moves out isotropically at VA but is carried downstream
at vsw. The tangent to the circle from the initial point defines the Alfven Mach
cone.

Thus, the shock shape becomes blunter for smaller MA and more swept back for
larger MA. This is consistent with simple intuition for a slower and faster flow,
respectively.

Figure 12.3 illustrates the changes in the shock’s shape and location with varia-
tions in MA. Note that the shock’s nose moves sunward as MA decreases while the
shock’s shape becomes increasingly blunt, as predicted from Eq. (12.11).

One implication of the solar wind’s time-varying characteristics and the depen-
dence of the bow shock’s location and shape on Pram, MA, and MS is that the
bow shock is almost always moving; it is a dynamic object. Times when it is al-
most stationary are rare and therefore important for studies of the shock’s intrinsic
structure.

12.2 Fast Mode Nature of Earth’s Bow Shock

Figure 12.4 demonstrates that Earth’s bow shock is a fast mode shock. Why? Be-
cause the plasma is slowed, heated, compressed (ruling out an intermediate/Alfven
shock), and the magnetic field is increased in strength (ruling out a slow mode
shock) and changed in direction. The deflection of the flow in velocity is also im-
portant, since it is the first step in deflecting the flow around the magnetosphere.
Note the small spatial scale of the shock ramp – data similar to Figure 12.4 demon-
strate that the spatial scale is of order 10c/ωpe, corresponding to about 20 km and
approximately 2000λD.

Figure 12.5 shows the data for two other crossings of Earth’s bow shock, while
Figure 12.6 compares the fluid variables with the predictions of the MHD Rankine-
Hugoniot conditions, accomplished by nonlinear least-squares fitting of the obser-
vations to the theory in order to determine the normal direction and other charac-
teristics of the shock [e.g., Lepidi et al., 1997]. As can be seen, the observations
agree well with the theory.

The first indication that the MHD picture is too simple is apparent when one
considers the shock heating of the ions and electrons separately. One finds that
approximately 90% of the shock heating goes into the ions, with only about 10%
going into the electrons, resulting in the condition Ti � Te being satisfied down-
stream from the shock. Second, most of the ion heating is perpendicular to the

4



Figure 12.3: Changes in the shock’s shape and location with variations in MA

[Chapman & Cairns, 2003]: (top) absolute location relative to the Earth, (bottom)
curves shifted so that each shock’s nose is at the origin. Here MA = 9.7 (solid
curves), 4.9 (dashed), 1.9 (dotted), and 1.4 (fancy).
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Figure 12.4: Crossing of Earth’s bow shock in a region where the shock is quasi-
perpendicular and supercritical [Schopke et al., 1983]. The figure demonstrates that
Earth’s bow shock is a fast mode shock, as well as showing the presence of gyrating
ions in the shock’s foot.
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Figure 12.5: Traversal of Earth’s bow shock into the magnetosheath near 21:53
with a subsequent return into the solar wind near 21:53magnetosheath [Lepidi et
al., 1997]. (An additional in-out pair is near 21:28.) The shock moves out due to
a low density region of the solar wind arriving, and then moves in due to a higher
density region, causing the more complicated behaviour of the density.
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Figure 12.6: Comparison of observational data (open symbols with error bars) for
the second shock crossing in Figure 12.5 with predictions based on the Rankine-
Hugoniot conditions (solid lines with dashed lines showing the uncertainty limits)
[Lepidi et al., 1997].
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magnetic field and is much larger than the heating expected just from conservation
of the first adiabatic invariant across the shock’s magnetic ramp. Third, the elec-
tron heating is primarily consistent with Te,⊥ increasing adiabatically across the
shock (i.e., constancy of the first adiabatic invariant).

Consider now: “How is the plasma temperature increased in a collisionless
shock?”. The answer is easy for a collisional shock: collisions re-distribute the
incoming ram kinetic energy as thermal energy. (This explains qualitatively the
increase in downstream pressure being proportional to the Mach number squared
in the gasdynamic shock in Question 1 of Assignment 2.) But how is this done in
a collisionless shock? Not by Coulomb collisions. As suggested by the temperature
properties described above, the answer is partially by wave-particle scattering and
other kinetic processes that are not included in fluid theories and partially by effects
contained in two-fluid theory but not in MHD.

12.3 Kinetic Aspects of Shock Physics

Observations show that the shock structure varies primarily with the fast mode
Mach number Mms = vsw/cf and with the angle θBn between the upstream field
B and the local shock normal. In particular, for quasi-perpendicular regions of the
shock (θBn ≥ 45 degrees) there is a transition between “laminar” (smooth) and
“turbulent” magnetic profiles in the domain Mms ∼ 2 − 3, with laminar profiles
at low Mms (Figure 12.7). Laminar profiles are by definition smooth, except for
upstream trains of standing whistler waves (which are related to dissipation pro-
cesses at the shock). Turbulent shocks have a well-defined “shock foot”, where the
magnetic field smoothly increases over a scale length ∼ vsw/Ωp, and an “overshoot”
behind the ramp where the field increases above the Rankine-Hugoniot prediction
on a scale ∼ vsw/Ωp (sometimes with additional ripples) before finally reaching the
average field level predicted by the Rankine-Hugoniot conditions. Particle detec-
tors show that the foot and overshoot regions are associated with gyrating beams of
solar wind protons reflected at the shock (Figure 12.8). Laminar shock transitions
sometimes have an upstream wave train but do not have significant levels of gyrat-
ing ions. The production of these gyrating ions is intrinsic to both the structure
and dissipation processes active at supercritical shocks, as explained more below.
The definition of a “supercritical” shock is that gyrating ions represent the primary
dissipation process active at the shock.

Quasi-parallel shocks are very turbulent with fluctuations δB/Bsw ∼ 1 and an
extensive foreshock region, sometimes to such a degree that it is difficult to identify
where the shock transition occurs (Figure 12.9). Large fluxes of gyrating ions are
often observed throughout a huge volume near a quasi-parallel shock transition.

The development of reflected, gyrating beams of solar wind ions, with associ-
ated creation of foot and overshoot regions and thermalization of the downstream
particles is also associated with the self-consistent development of an electrostatic
potential across the shock (the “cross-shock potential”). These phenomena can be
explained as follows [Gosling et al., 1982; Schwartz et al., 1983; Goodrich, 1985;
Scudder et al., 1987].

(1) During one gyroperiod solar wind protons travel about 5000 km (at vsw),
while the electrons travel ∼ 3 km, and the shock ramp is ∼ 20 km thick. The ions
thus see the ramp as an abrupt discontinuity during their gyromotion (the ramp
is sufficiently thin that they move essentially as unmagnetized particles) while the
electrons complete numerous gyroperiods as they cross the ramp.

(2) A self-consistent electrostatic potential is encountered at the shock ramp,
which slows and resists the ion flow (but accelerates the electron flow).

(3) A fraction (∼ 10 − 20%) of the solar wind protons have insufficient normal
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Figure 12.7: The top panel shows a laminar bow shock profile while the bottom
panel shows a turbulent shock profile [Livesey et al., 1984; Gosling and Robson,
1985].

Figure 12.8: Ion velocity distributions observed downstream from a marginally su-
percritical shock with θBn ∼ 90 degrees and B almost perpendicular to the instru-
ment’s measurement plane [Schopke et al., 1983]. The dashed circle in the second
frame shows the predicted locus for specularly reflected ions.
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Figure 12.9: Schematic illustration of the quasi-parallel and quasi-perpendicular re-
gions of Earth’s bow shock and the foreshock region upstream of the shock [Green-
stadt and Fredericks, 1979]. Note that the foreshock region upstream of the quasi-
parallell shock is extremely turbulent, often making it difficult to identify the shock
transition itself. .
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Figure 12.10: Schematic from Gosling and Robson [1985]. (a) Sketch of the trajec-
tory of an ion specularly reflecting off a shock with θBn = 90 degrees. (b) Idealized
2-D ion velocity distributions at several distances from the shock ramp. Specularly
reflected particles move along a circle of radius 2V cos θvn centred at the bulk flow
velocity. The dashed lines are aligned parallel to the shock surface.

velocity to overcome the potential barrier and are specularly reflected at the mag-
netic ramp by the cross-shock potential; that is, their velocities along the normal
direction are reversed as shown in Figure 12.10. This is the crucial step in devel-
oping the gyrating ions and much of the dissipation across the shock, as described
more below. (A similar reflection process leads to “shock surfing” and effective ion
acceleration to high energies [Zank et al., 1996].)

(4) The specularly reflected protons move so as to gain energy from the convec-
tion electric field and develop a large gyrospeed vg given by

vg = 2Vi| cos θvn sin θBn| (12.12)

as well as a different gyrocenter velocity. Here Vi ∼ vsw is the initial speed in the
local shock frame.

(5) The gyrocenter velocity is directed downstream for quasi-perpendicular shocks
(θBn > 45 degrees) but upstream for quasi-parallel shocks [Gosling et al., 1982].

(6) For quasi-perpendicular shocks, then, the reflected protons gyrate upstream
for a partial gyro-orbit before encountering the shock again, now with sufficient nor-
mal speed to overcome the potential barrier and pass downstream as a component
with large apparent thermal energy. The current associated with this motion causes
the magnetic field to increase in the downstream region. The spatial extent of the
foot and overshoot are then of order the gyroradius of the specularly reflected ions.

(7) The potential develops as a result of the different motions of electrons and
ions. For a perpendicular shock with the normal in the x direction and the magnetic
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field in the z direction, the momentum equation for the electron fluid is

mene
dv

dt
= −∇P − eneE− enev ×B . (12.13)

After neglecting the electron inertia term and performing other manipulations (in-
cluding writing the electron current in terms of the total current j and the ion
current, using Ampere’s Law, and neglecting the displacement current) one may
finally write

eφ(x) =

∫ x

−∞

dx

ne

∂

∂x

(

P +
B2

2µ0

)

+

∫ x

−∞

dxVyBz . (12.14)

The cross-shock potential φ thus results from the gradients in thermal and magnetic
pressure across the shock (an ambipolar potential) as well as the effects of the net
ion drifts associated with the gyrating ions (second term). This potential thus
develops self-consistently to allow some ion reflection as part of the shock structure.
The cross-shock potential is primarily oriented in the shock’s normal direction.

Order of magnitude estimates (see the jump condition (5.12) and the require-
ment that the potential reflect significant numbers of solar wind ions) are that

eφ ≈
1

2
miv

2

sw ≈ kBTi,down . (12.15)

These estimates explain the characteristic size of the cross-shock potential and the
amount of ion heating downstream from the shock. Moreover, the above balance
between the upstream flow energy and the downstream temperature enhancement
also explains qualitatively how the overall Rankine-Hugoniot conditions for the
shock transition can be obeyed on the large scale, as they must be despite very
different microphysics.

Figure 12.11 shows the development of gyrating ion beams in hybrid simulations
(fluid electrons and particle ions), while Figure 12.12 shows the corresponding spa-
tial profiles of the magnetic field strength and the cross-shock potential [Leroy et al.,
1983]. Qualitatively the gyrating ions comprise a second ion population moving
with significant relative speed to the core solar wind ions, especially perpendicular
to the magnetic field. The associated gradients in the particle distribution function
imply the possibility of instabilities redistributing this free energy and ending up
with a single, broadened and thermalized ion distribution in the magnetosheath.
Figures 12.4 and 12.8 show this process observationally [Schopke et al., 1983].

A qualitatively important point is that the cross-shock potential and formation
of gyrating ion beams involve reversible physics in the sense that no dissipation, en-
ergy loss, or entropy change is involved. How can this lead to an irreversible shock
transition with a change in entropy between the upstream and downstream states?
The answer is that wave-particle interactions associated with unstable particle dis-
tributions lead to dissipation and an increase in entropy. Nevertheless, much of the
apparent “heating” of the electrons and ions across the shock can be understood in
terms of “reversible” physics and the operation of the cross-shock potential.

A final remark is that for quasi-parallel shocks the gyrating ions have gyrocen-
ters directed upstream from the shock, leading to an extended upstream region
filled with gyrating ions and the large-amplitude MHD waves they drive. These
upstream “foreshock” regions are then very turbulent with much evidence of Fermi
acceleration and wave-particle interactions.

12.4 The Magnetosheath

As illustrated in Figure 12.1 the magnetosheath is the plasma region between the
bow shock and the magnetopause in which the shocked solar wind and particles
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Figure 12.11: Ion phase space plots (vx, x) and (vy , x) from hybrid shock simulations
[Leroy et al., 1982; Goodrich, 1985]. Here x is the coordinate along the shock normal
and the magnetic field is in the z direction, MA = 6, and βi = βe = 1. The times
for each panel are (a) t = 0, (b) 1.3Ω−1

ci , (c) 2.6Ω−1

ci , (d) 5.2Ω−1

ci , and (e) 9.6Ω−1

ci .
Note the development of the gyrating ion beams.
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Figure 12.12: Plots of the magnetic field and cross-shock potentials as a function of
x and time for the simulations in Figure 12.11 [Leroy et al., 1982; Goodrich, 1985].
Note the development of the foot and overshoot in the potential and magnetic field.

15



escaping from the magnetosphere are found. Near the nose of the bow shock the
magnetosheath plasma is primarily a hot, dense, slow plasma with Ti � Te. How-
ever, this flow accelerates up towards the solar wind speed and becomes increasingly
wind-like toward the flanks of the bow shock, as the shock becomes increasingly
weak. MHD and gasdynamic simulations show the large scale structure of the mag-
netosheath with very good accuracy [e.g., Spreiter et al., 1966]. For instance, Figure
12.13 shows the spatially-varying characteristics of the magnetosheath plasma just
described above. Note that the magnetosheath remains a collisionless plasma with
collision frequencies much smaller than other relevant frequencies.

Figure 12.13: Contours of the plasma flow density (left) and both flow speed and
temperature (right) in the magnetosheath [Spreiter et al., 1966; Cravens, 1997].

The properties of the bow shock vary with position, leading to changes in the
temperature, flow speed, gyrospeed etc. of the particles injected into the magne-
tosheath. The reason is that the normal speed of the solar wind into the local shock
surface varies, causing the local values of Mms, MA, and MS to vary and so the
Rankine-Hugoniot jumps to vary. These effects can be seen in the varying density,
speed and temperature along the shock surface in Figure 12.13.

The particles entering the magnetosheath through the shock have abundant
sources of free energy for wave growth due to the ions and electrons both having
temperature anisotropies (i.e., T⊥ 6= T‖), due to gyrating ions lying on a ring in
velocity space, and due to the cross-shock potential creating a low energy hole in
the electron distribution. As discussed qualitatively in Lectures 1, 4 and 11, growth
of waves removes energy from the particles, decreases unstable gradients in the
particle distribution, and ideally diffuses particles in velocity space and thermalizes
the particle distributions by wave-particle scattering.
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