Lecture 6

Circular Motion

Pre-reading: KJF §6.1 and 6.2

Circular motion

KJF §6.1-6.4

Angular position

If an object moves in a circle of radius r, then after travelling a distance s it has moved an angular displacement θ :

$$\theta = \frac{s}{\pi}$$

 θ is measured in radians $(2\pi \text{ radians} = 360^\circ)$

KJF §3.8

Tangential velocity

If motion is *uniform* and object takes time t to execute motion, then it has tangential velocity of magnitude v given by

$$v = \frac{s}{t}$$

Period of motion T = time to complete one revolution (units: s)

Frequency f = number of revolutions per second (units: s^{-1} or Hz)

$$f = \frac{1}{T}$$

Angular velocity

Define an angular velocity ω

$$\omega = \frac{\text{angular displacement}}{\text{time interval}} = \frac{\theta}{t}$$

Uniform circular motion is when ω is constant.

Combining last 3 equations:

KJF §6.1

Question

You place a beetle on a uniformly rotating record

Is the beetle's *tangential* velocity different or the same at different radial positions?

Is the beetle's *angular* velocity different or the same at the different radial positions?

Remember; all points on a rigid rotating object will experience the **same** angular velocity

6

6

Consider an object is moving in uniform circular motion - tangenti(a) speed is constant.

Is the object accelerating?

Velocity is a vector

- : changing direction
- ⇒ acceleration
- \Rightarrow net force

and so

 $\Delta \underline{v} = \underline{v}_2 - \underline{v}_1$

of the circle

The change in velocity

and Δy points towards the centre

Angle between velocity vectors is

 $\Delta v = v\theta$

 θ so

 $a = \frac{\Delta v}{\Delta t} = \frac{v\theta}{r\theta/v} = \frac{v^2}{r}$

Centripetal acceleration

Acceleration points towards centre

- centripetal acceleration $a_{\rm c}$

$$a_c = \frac{v^2}{r} = \omega^2 r$$

Since the object is accelerating, there must be a force to keep it moving in a circle

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

 $F_c = \frac{mv^2}{r} = m\omega^2 r$ This centripetal force may be provided by friction, tension in a string, gravity etc. or combinations. Examples?

Note that centripetal force is the name given to the resultant force: it is not a separate force in the freebody diagram.

The centripetal acceleration has to be provided by some other force (tension, friction, normal force) in order for circular motion to occur.

Solving CM problems

- Draw a free-body diagram
- If the object is moving in a circle, there must be a net force pointing towards the centre of the circle.
- The magnitude of this net force is given by

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

Problem 1

You enter the carnival ride called "The Rotor". The circular room is spinning and you and other riders are stuck to the circular wall.

- · Draw a free-body diagram of the woman in red
- Is she in equilibrium? Explain
- What force is providing the centripetal force?

Whirling bucket

A bucket of water is whirled around in a vertical circle with radius 1m.

What is the minimum speed that it can be whirled so the water remains in the bucket?

[3 ms⁻¹, or rotation period 2s]

13

Car around a corner

A car of mass 1.6 t travels at a constant speed of 72 km/h around a horizontal curved road with radius of curvature 190 m. (Draw a free-body diagram)

What is the minimum value of μ_s between the road and the tyres that will prevent slippage?

Car over a hill

A car is driving at constant speed over a hill, which is a circular dome of radius 240 m.

Above what speed will the car leave the road at the top of the hill?

15

Banked road

On a curve, if the road surface is "banked" (tilted towards the curve centre) then the horizontal component of the normal force can provide some (or all) of the required centripetal force. Choose $v \& \theta$ so that less or no static friction is required.

KJF example 6.6

KJF example 6.6

A curve of radius 70m is banked at a 15° angle. At what speed can a car take this curve without assistance from friction?

 $[14 \text{ ms}^{-1} = 50 \text{ km h}^{-1}]$

KJF example 6.6

Next lecture

Centre of mass and Torque

Read: KJF §7.2, 7.3

18