Meteor collision

A crater in Arizona is thought to have been formed by the impact of a meteorite with the earth over 20,000 years ago. The mass of the meteorite is estimated at 5×10^{10} kg and its speed 7200 ms⁻¹. Mass of earth = 5.98×10^{24} kg.

Judging from a frame of reference in which the earth is initially at rest, what speed would such a meteor impart to the earth in a head-on collision? Assume the pieces of the shattered meteor stayed with the earth as it moved.

Solution: The initial momentum (taking the Earth at rest initially) is

 $p_{\rm i} = m_{\rm m} v_{\rm m}$ = 5 × 10¹⁰ × 7200 = 3.6 × 10¹⁴ kg ms⁻¹

The final momentum, since the meteor and the Earth stick together, is $p_{\rm f} = (m_{\rm m} + m_{\rm E})v_{\rm m} = p_{\rm i}$ since momentum is conserved.

Hence

$$\begin{split} \nu_{\rm f} &= p_{\rm i} / (m_{\rm m} + m_{\rm E}) \simeq p_{\rm i} / m_{\rm E} \quad {\rm since} \ m_{\rm E} \gg m_{\rm m} \\ &= 3.6 \times 10^{14} \, {\rm kg} \ {\rm ms}^{-1} \, / \, 5.98 \times 10^{24} \, {\rm kg} \\ &= 6.02 \times 10^{-11} \, {\rm ms}^{-1} \\ &= 0.019 \, {\rm m} \, {\rm yr}^{-1} \\ &= 1.9 \, {\rm mm} \, {\rm yr}^{-1} \end{split}$$