Elephant tug-of-war

Find the tension in (and direction of) the rope attached to the elephant. Everyone is stationary.

Solution: Everyone is stationary, hence the net force is zero. Draw the FBD:

Separate into X and Y components: $T_{E,x} = T_E \cos \theta$ and $T_{E,y} = T_E \sin \theta$

- (a) X: $\Sigma F_x = 0$ so $400 \text{ N} - T_E \cos \theta = 0$
- (b) Y: $\Sigma F_y = 0$ so $300 \text{ N} - T_E \sin \theta = 0$
- so

 $T_{E} \cos \theta = 400 \text{ N}$ $T_{E} \sin \theta = 300 \text{ N}$

Now, from the definition of $\tan \theta$, $\tan \theta = \sin \theta / \cos \theta$ so

 $\tan \theta = T_E \sin \theta / T_E \cos \theta = 300/400 = 0.75$

SO

 $\theta = \arctan(0.75) = 36.9^{\circ}$

Hence

 $T_E = 300 \text{ N} / \sin(36.9^\circ) = 300 \text{ N} / 0.6 = 500 \text{ N}$

so the elephant is pulling with force 500 N at an angle 36.9° S of W