Lecture 1: Astrophysics

Senior Astrophysics

2018-03-06

Senior Astrophysics

Outline

1 Introduction

- 2 What is astrophysics?
- 3 Website of the Week

4 Radiation

5 Intensity and brightness

6 Next lecture

- 18 sessions last lecture ADV only
- 14 lectures + 4 computational labs
- From week 2, Friday 12pm lectures will be in SNH Learning Studio 4003 Need to remember your Matlab!
- Extra lab session on Wednesdays at 10 am; SNH Learning Studio. Only need to attend one per week.
- Also: plan to spend 10 minutes each week telling you about important web research tools in astronomy: *Website of the Week* [WOTW]
 - Will be the basis for at least one assignment question, so pay attention!

Timetable

Week	Date	Day		Topic				
week 1	6 Mar	Tue 1pm	Lecture 1	Introduction				
	$7 \mathrm{Mar}$	Wed 9am	Lecture 2	Radiation processes				
	9 Mar	Fri 12pm	Lecture 3	Emission and absorption				
week 2	13 Mar	Tue 1pm	Lecture 4	Sources of radiation				
	$14 { m Mar}$	Wed 9am	Lecture 5	Stellar structure				
	$16 { m Mar}$	${ m Fri} \ 12 { m pm}/{ m Wed} \ 10 { m am}$	Lab 1	Lab 1: Line formation				
week 3	$20 { m Mar}$	Tue 1pm	Lecture 6	The main sequence				
	$21 { m Mar}$	Wed 9am	Lecture 7	Stellar evolution 1				
	$23 { m Mar}$	${ m Fri} \ 12 { m pm}/{ m Wed} \ 10 { m am}$	Lab 2	Lab 2: Stellar evolution 1				
week 4	$27 { m Mar}$	Tue 1pm	Lecture 8	Stellar evolution 2				
	$28 { m Mar}$	Wed 9am	Lecture 9	Supernovae				
Mid-semester break								
week 5	$10 \mathrm{Apr}$	Tue 1pm	Lecture 10	Stellar remnants	Assignment 1 due 9 Apr			
	$11 \mathrm{Apr}$	Wed 9am	Lecture 11	Binary stars				
	$13 \mathrm{Apr}$	Fri $12 \mathrm{pm}/\mathrm{Wed}\ 10 \mathrm{am}$	Lab 3	Lab 3: Stellar evolution 2				
week 6	$17 \mathrm{Apr}$	Tue 1pm	Lecture 12	Accretion energy				
	$18 \mathrm{Apr}$	Wed 9am	Lecture 13	Binary evolution				
	20 Apr	Fri $12 \text{pm}/\text{Wed} \ 10 \text{am}$	Lab 4	Lab 4: Roche lobes				
week 7	$24 \mathrm{Apr}$	Tue 1pm	Lecture 14	ADV-only lecture				
week 8	$30 \mathrm{Apr}$	Mon 5pm			Assignment 2 due 30 April			

Lecture 1: Astrophysics

- Assignments will be released two weeks before the due date.
- All assignments will be submitted through Turnitin.
- Either typeset (IAT_EX/Word etc.) or handwritten is acceptable **BUT** quality must be *legible* (no unreadable photos from your phone!)
- Deadline is 11:59 pm on the due date.
- **DO NOT** put your name on the assignment, or in the file name; just your SID. Assignments will be marked anonymously.

• Radiation — lectures 1-4 + lab 1

How is radiation produced? How is it affected as it propagates?

- Stellar structure and evolution lectures 5–10 + labs 2 & 3 Modelling stars; the evolution of stars; stellar remnants
- Binary stars lectures 11–13 + lab 4

Binary stars; evolution of binaries; applications in modern astronomy

• Final lecture (lecture 14): Adv-only: Problems in binary evolution (examinable)

No required text. Highly recommended:

- Carroll & Ostlie, An Introduction to Modern Astrophysics
- Hilditch, An introduction to close binary stars

Both on closed reserve in SciTech library.

Astrophysics is a **big** subject.

- Sometimes will just flag where a whole (possibly large!) field branches off, e.g. won't talk about how stars form
- Sometimes will give qualitative description (with lots of pretty pictures); unless I say otherwise, this is non-examinable
- A few topics are amenable to analysis at our level in time available. I will walk through these in class, and these will most naturally be the subject of assignments and exams.

Application of laws of physics to

- understand the behaviour of astronomical objects
- predict new phenomena that could be observed

Physics used can include electromagnetism, fluid mechanics, plasma physics, general relativity, nuclear physics, and more.

- Main difference between astrophysics and other branches of physics: controlled experiments are (almost) never possible!
- *Observational* science: only information we have is via study of EM radiation from objects (and, very recently, high energy particles and gravitational waves)

What is astrophysics?

Consequences:

- **complex systems**: can't change variables separately to isolate their effects, e.g. galaxies
- timescales: often \gg human lifetimes, so can't follow many processes all the way, e.g. stellar evolution
- rare events: knowledge is limited, and will usually not occur nearby; e.g. SNe
- best way to add knowledge is to use **new wavelength domains**, e.g. radio, X-ray
- statistical arguments vital! more so than in many areas of lab physics, e.g. γ -ray bursts

Physical conditions

Physical conditions we are studying are **very** diverse:

• temperature:

3K	<	T	<	$10^{12} {\rm K}$
(CMB)				gas near BH

• density

• speeds:

 $v\sim 0.99c$ in jets from BH

Units

- Astronomers use many non-SI units. Partly historical, like *magnitudes*, but we'll try to avoid those in this course.
- Other main problem is scale of astronomy: inconvenient orders of magnitude involved with using SI units.
- Principal ones we will worry about:
 - distance:
 - parsec (pc); 1 pc = 3.26 ly = 3.086×10^{16} m Nearest star is 1.3 pc away
 - solar radius: $1R_{\odot} = 6.955 \times 10^8$ m
 - mass:
 - solar mass: $1M_\odot=1.989\times 10^{30}~{\rm kg}$
 - luminosity (energy/unit time)
 - solar luminosity: 1 $L_{\odot} = 3.839 \times 10^{26} \text{ W}$

APOD: Astronomy Picture of the Day

http://apod.nasa.gov/apod/ Annotated daily astronomical image

Part 1: Radiation

The physics of radiation (4 lectures + 1 lab)

- How is radiation affected as it propagates to the observer?
- **2** Mechanisms that produce radiation
 - Blackbody radiation
 - Transitions within atoms
- **③** Use results to understand spectra of stars, nebulae

Because all of astronomy is dependent on electromagnetic radiation, we need to understand radiation itself: how it is produced, how it propagates, and how it is affected as it propagates.

Interstellar gas

Photons escaping star

Basic properties of radiation

• EM radiation: frequency ν , wavelength λ

$$\lambda \nu = c$$

• Individual photons have energy

$$E = h\nu$$

where h = Planck's constant

• Common to measure energies in eV, where

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

(energy of visible light photon \sim few eV)

Simplification: astronomical objects are normally much larger than λ , so

- neglect diffraction
- light travels along straight lines

Need to be careful about *direction* of photon travel:

• Far from source (e.g. light from distant star) can assume radiation is travelling radially

• But e.g. inside a star, photons move in many different directions, so have to worry about angles and how much radiation is moving in each direction

Flux and luminosity

• Define the **radiant flux** *F* from a source as the total amount of light energy (of all wavelengths) that crosses a (perpendicular) unit area per unit time

Flux and luminosity

• For a spherically symmetric steady source with luminosity L (= total amount of energy emitted per unit time): energy conservation means

$$F(r) = \frac{L}{4\pi r^2}$$

inverse square law: measured flux drops off as square of distance

- L is total luminosity emitted at *all wavelengths*, so F is also integrated over all wavelengths.
- In practice, often measure only part of spectrum, so need to consider how radiation is distributed over frequency

$$F = \int F_{\nu}(\nu) d\nu$$

total energy flux = integral of F_{ν} over all frequencies Then

$$dE = F_{\nu} \, dA \, dt \, d\nu$$

- Units of F_{ν} are (energy)/(time) per area per frequency bin so W m⁻² Hz⁻¹
- Special unit: 1 Jy = 10^{-26} W m⁻² Hz⁻¹
- F_ν called "flux density" in order to get power received, need to multiply by the area and by the bandwidth

Solid angle

First we define a **solid angle**

• Consider a sphere of radius r.

• The area dS of a patch on the surface is

$$dS = r \, d\theta \times r \sin \theta \, d\phi \equiv r^2 \, d\Omega$$

 $d\Omega$ is the solid angle subtended by the area dS at the centre of the sphere

- $\bullet\,$ Unit of solid angle is the ${\bf steradian}\;{\rm sr}$
- 4π sr cover the whole sphere

• Consider an area dA normal to a light ray, and consider all rays that pass through dA which lie within a small solid angle $d\Omega$

• Amount of energy dE passing through dA and into $d\Omega$ in time dt and frequency range $d\nu$ is

 $dE = I_{\nu} \, dA \, dt \, d\nu \, d\Omega$

• I_{ν} is the **specific intensity** of the radiation

- Units of specific intensity are: W m⁻² Hz⁻¹ sr⁻¹
- Another, more intuitive name for specific intensity is **brightness**

- We can show that brightness is **constant** if there is no emission or absorption.
- Consider two points on a ray; construct areas dA_1 and dA_2 perpendicular to the ray at those points. How much energy is carried by those rays that pass through **both** dA_1 and dA_2 ?

• Let $d\Omega_1$ be the solid angle subtended by dA_2 at dA_1 ; then the energy passing through dA_1 into $d\Omega_1$ is

$$dE_1 = I_{\nu 1} \, dA_1 \, dt \, d\nu_1 \, d\Omega_1$$

and similarly

$$dE_2 = I_{\nu 2} \, dA_2 \, dt \, d\nu_2 \, d\Omega_2$$

- No energy loss $\rightarrow dE_1 = dE_2$
- No frequency change $\rightarrow d\nu_1 = d\nu_2$
- Use the definition of solid angle: $d\Omega_1 = dA_2/r^2$
- Find:

$$I_{\nu 1} = I_{\nu 2}$$

- In other words, specific intensity remains the same as radiation propagates through space.
- The brightness of an object¹ stays the same no matter the distance: as it gets further away, amount of flux goes down, but amount of area goes down at same rate.
- If we define the distance along the beam to be s, then we can write

$$\frac{dI_{\nu}}{ds} = 0$$

i.e. brightness doesn't change along beam

¹Only matters for *extended* objects (not point sources).

Brightness

The Sun in three imaginary photos taken from a long distance (left), medium distance (center), and short distance (right) would have a constant brightness but increasing angular size (from http://www.cv.nrao.edu/course/astr534/Brightness.html)

Brightness

apod.nasa.gov/apod/ap150102.html

Lecture 1: Astrophysics

Intensity and brightness

Radiation processes

- Emission
- Absorption
 - Cross-section
 - Optical depth