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Radiative transfer equation

Last lecture we derived an expression for how radiation intensity changes
with pure absorption:

dIν
ds

= −ανIν

If the absorption coe�cient is a constant (e.g. uniform density gas of
ionised hydrogen), then

Iν(∆s) = I0e
−αν∆s

i.e. speci�c intensity after distance ∆s
= initial intensity × radiation exponentially absorbed with distance
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Absorption: Macroscopic version

Imagine radiation travelling into a cloud of absorbing gas. The
exponential term de�nes a scale over which radiation is attenuated.

When
−αν∆s = 1

the intensity will be reduced to 1/e of its
original value.
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Absorption: Macroscopic version

We de�ne the optical depth τ as

τν(s) = αν∆s [more generally: τν(s) =

∫ s

s0

αν(s
′)ds′]

A medium is optically thick at a frequency ν if the optical depth for a
typical path through the medium satis�es

τν � 1

Medium is optically thin if instead

τν � 1

We take τν = 1 to be �just optically thick�.
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An optically thin medium is one which a
typical photon of frequency ν can pass
through without being absorbed.
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Smog
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Smog

www.smh.com.au/environment/fresh-out-of-fresh-air-report-20090324-98wq.html
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Interstellar clouds

apod.nasa.gov/apod/ap091001.html
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Interstellar clouds

apod.nasa.gov/apod/ap091001.html
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Optical depth

For light arising inside a gas (e.g. light from
inside a star), the optical depth is the number
of mean free paths from the original position
to the surface of the gas, measured along the
ray's path.

We typically see no deeper into an atmosphere
at a given wavelength than τλ ' 1.
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Limb darkening

This explains the phenomenon of limb

darkening. Near the edge of the Sun's
disk, we do not see as deeply into the solar
atmosphere.
Since T (r2) < T (r1), we see a lower
temperature, and hence the limb of the
Sun appears darker than its centre.
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apod.nasa.gov/apod/ap091001.html
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Radiative transfer

We can write the radiative transfer equation with both absorption and
emission:

dIν
ds

= −αIν + jν
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Source function

Rewrite this using the optical depth as a measure of `distance' rather
than s:

dIν
ds

= −ανIν + jν

Divide by the absorption coe�cient:

dIν
ανds

= −Iν +
jν
αν

or
dIν
dτν

= −Iν + Sν

where Sν = jν/αν is the source function. This is sometimes a more
convenient way to write the equation.
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Source of radiation

Now we can describe what happens to radiation as it propagates through
a medium, which might remove the radiation (absorption) or add to it
(emission).

Where does the radiation come from in the �rst place?
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Blackbody radiation

The most important type of radiation is blackbody radiation:
radiation which is in thermal equilibrium with matter at some
temperature T

Emission from many objects is (at least roughly) of this form. In
particular, interiors of stars are like this.
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Blackbody radiation

A blackbody of temperature T emits a continuous spectrum with
some energy at all wavelengths. The frequency dependence of blackbody
radiation is given by the Planck function

Bν(T ) =
2hν3/c2

ehν/kT − 1

or

Bλ(T ) =
2hc2/λ5

ehc/λkT − 1

where h = 6.626× 10−34 J s is Planck's constant
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Blackbody radiation

Bν has the same units as speci�c intensity:
W m−2 Hz−1 sr−1

i.e. amount of energy per unit area, per unit time, per unit frequency,
per unit solid angle.

Bλ has units W m−2 nm−1 sr−1
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Blackbody radiation

Plot Bλ(T ). Properties:

continuous spectrum

increasing T increases Bλ
at all wavelengths

higher T shifts peak to
shorter wavelength /
higher frequency

CO �g. 3.8
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Blackbody radiation

Note that for a source of blackbody radiation,

Iν = Bν

the speci�c intensity of radiation emitted is given by the Planck function.
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Blackbody radiation

Di�erentiate Bλ(T ) with respect to wavelength and set resulting
expression to zero to �nd where Planck function peaks

Find

λmax =
2.88× 10−3

T
(m)

i.e. hotter T, smaller wavelength: Wien's displacement law
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Stefan-Boltzmann equation

The luminosity of a blackbody of area A and temperature T is given by
the Stefan-Boltzmann equation

L = AσT 4

where σ = 5.670× 10−8 W m−2 K−4

So for a spherical star of radius R, A = 4πR2 and the luminosity is

L = 4πR2σT 4
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E�ective temperature

Since stars are not perfect blackbodies, we use this equation to de�ne
the e�ective temperature Te of a star's surface

Fsurf = σT 4
e

E�ective temperature is the temperature of a blackbody that emits the
same �ux

e.g. for the Sun
L� = 4πR2

�σT
4
e

Find Te = 5770 K

Note that Te is perfectly well-de�ned even if the spectrum is nothing like
a blackbody.
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E�ective temperature

The Sun's spectrum is a good match to the spectrum of a blackbody of temperature T = 5777 K (in green).

(http://homepages.wmich.edu/�korista/phys325.html)
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Which objects have blackbody spectra?

We get a blackbody spectrum wherever we have matter in thermal
equilibrium with radiation.

Go back to our radiative transfer equation again:

dIν
dτν

= −Iν + Sν

where Sν = jν/αν is the source function. Since the gas is in thermal
equilibrium with the radiation, then we take this source function to be
the Planck function, and assume T is constant:

dIν
dτν

= Iν +Bν(T )
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We can integrate this equation (hint: multiply both sides by eτν ), with
solution

Iν(τν) = Bν + e−τν [I0 −Bν ]

where I0 is the value of Iν at τν = 0.

The second term approaches 0 as τν becomes large, so at high optical
depth Iν = Bν , e.g. in the centre of a star.

Alternately:
Iν(τν) = I0e

−τν +Bν(1− e−τν )
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In general:

in thermal equilibrium, the source function is the Planck function,
Sν = Bν

However, even in thermal equilibrium, the intensity of the radiation Iν
will not necessarily be equal to Bν unless the optical depth is large,
τν � 1.

Saying Iν = Bν is a statement that the radiation �eld is described by the
Planck function

Saying Sν = Bν describes the physical source of the radiation, jν/kν , as
one that produces blackbody radiation
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Atomic processes

So now, we're going to look at the star's atmosphere
We need to understand the di�erent ways that matter can interact with
radiation.
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Atomic processes: review

Radiation can be emitted or absorbed when electrons make transitions
between di�erent states. There are three main categories:

Bound-bound (excitations and de-excitations): electron moves between two

bound states (orbitals) in an atom or ion, and a photon is emitted or absorbed
Bound-free:

bound → unbound: ionisation

unbound → bound: recombination

Free-free: free electron gains energy by absorbing a photon in the vicinity of an

ion, or loses energy by emitting a photon: bremsstrahlung (`braking radiation')
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Bound-bound transitions

Transitions between two atomic energy levels

Energy of the emitted/absorbed photon is the di�erence between the
energies of the two levels

hν = |Ehigh − Elow|
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Hydrogen energy levels

Energy levels are labelled by n the principal quantum number

Lowest level (n = 1) is the ground state.

States with larger n have energy

En = −R
n2

where R = 13.6 eV is a constant

The n-th energy level has 2n2 degenerate quantum states (same E)
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Hydrogen spectrum

CO �g. 5.7

Special terminology: transitions involving n = 1, 2, 3, 4 are part of the
Lyman, Balmer, Paschen, Brackett series
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Hydrogen spectrum

CO �g. 5.7

Di�erent transitions are labelled with Greek letters, so Lyα arises from
the n = 2 to n = 1 transition; Balmer α (written Hα) arises from n = 3
to n = 2, Hβ is n = 4 to n = 2, etc.
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Next lecture

Sources of radiation

Atomic processes

Absorption and emission line spectra

Optically thick and thin sources
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