
Lecture 5: Stellar structure

Senior Astrophysics

2018-03-14

Senior Astrophysics Lecture 5: Stellar structure 2018-03-14 1 / 28



Outline

1 Stars

2 Simplifying assumptions

3 Stellar structure

4 Virial theorem

5 Website of the Week

6 Timescales

7 Structure again

8 Next lecture

Senior Astrophysics Lecture 5: Stellar structure 2018-03-14 2 / 28



Part 2: Stars

Stellar structure and evolution (7 lectures + 2 labs)
1 How stars work
2 How stars evolve
3 Stellar remnants
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Motivation

http://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.html][http://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.htmlhttp://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.html]]
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Stellar structure

What is a star?
Held together by self-gravity
Collapse is resisted by internal pressure
Since stars continually radiate into space, there must be a continual
energy source
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Simplifying assumptions

Stars are spherical and symmetrical
all physical quantities depend only on r
Ignore rotation
Ignore outside gravitational influences
Uniform initial composition
no initial dependence of composition on radius
Newtonian gravity
no relativistic effects
Stars change slowly with time
can neglect d/dt terms
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Stellar structure

To describe an isolated, static, symmetric star, we need four equations:
1 Conservation of mass
2 Conservation of energy (at each radius, the change in the energy flux

equals the local rate of energy release)
3 Equation of hydrostatic equilibrium (at each radius, forces due to

pressure differences balance gravity)
4 Equation of energy transport (relation between the energy flux and

the local gradient of temperature)
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Stellar structure

In addition, we need to describe
1 Equation of state (pressure of the gas as a function of its density and

temperature)
2 Opacity (how transparent the gas is to radiation)
3 Nuclear energy generation rate as f(r, T )
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Conservation of mass

If m is the mass interior to radius r, then m, r and ρ are not
independent, because m(r) is determined by ρ(r).
Consider a thin shell inside the star, radius r and thickness dr

r r+dr

Volume is dV = 4πr2dr, so mass of shell is

dm = 4πr2dr.ρ(r)

or
dm

dr
= 4πr2ρ(r)

the equation of mass conservation
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Hydrostatic equilibrium

Consider a small parcel of gas at a distance r from the centre of the star,
with density ρ(r), area A and thickness dr.
Outward force: pressure on bottom face P (r)A

dr

area A

g
P(r)

P(r+dr)
Inward force: pressure on top face, plus gravity
due to material interior to r:

P (r+dr)A+
Gm(r)dm

r2

=P (r + dr)A+
Gm(r)ρAdr

r2

Lecture 5: Stellar structure Stellar structure 10 / 28



Hydrostatic equilibrium

In equilibrium forces balance, so

P (r)A = P (r + dr)A+
Gm(r)ρAdr

r2

i.e.
P (r + dr)− P (r)

dr
A dr = −Gm(r)

r2
ρ(r)Adr

or
dP

dr
= −Gm

r2
ρ

the equation of hydrostatic equilibrium
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Estimate for central pressure

We can use hydrostatic equilibrium to estimate Pc: we approximate the
pressure gradient as a constant

dP

dr
∼ −∆P

∆R
=
Pc

R
=
GM

R2
ρ

Now assume the star has constant density (!): so

ρc = ρ̄ =
M

V
∼ M

4
3πR

3

then so

Pc ∼
3GM2

4πR4

For the Sun, we estimate Pc ∼ 3× 1014 Nm−2 = 3× 109 atm.
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Interlude: The virial theorem

Gravity has a very important property which relates the gravitational
energy of a star to its thermal energy.
Consider a particle in a circular orbit of radius r around a mass M .

M

Potential energy of particle is

Ω = −GMm

r

Velocity of particle is v =
√

GM
r (Kepler)
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The virial theorem

So kinetic energy is

K =
1

2
mv2 =

1

2

GMm

r

i.e. 2K = −Ω or 2K + Ω = 0.
Total energy

E =K + Ω

=Ω− Ω

2
=

Ω

2
< 0

Consequence: when something loses energy in gravity it speeds up!
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The virial theorem

The virial theorem turns out to be true for a wide variety of systems,
from clusters of galaxies to an ideal gas; thus for a star we also have

Ω + 2U = 0

where U is the total internal (thermal) energy of the star and Ω is the
total gravitational energy.
So a decrease in total energy E leads to a decrease in Ω but an increase
in U and hence T , i.e. when a star loses energy, it heats up.
Fundamental principle: stars have a negative heat capacity: they heat
up when their total energy decreases.
This fact governs the fate of stars
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Website of the Week:

NASA ADS
http://adsabs.harvard.edu/abstract_service.html
Querying the astronomical literature
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Timescales

There are three important timescales in the life of stars:
1 dynamical timescale — the time scale on which a star would expand or

contract if the balance between pressure gradients and gravity was
suddenly disrupted

2 thermal timescale — how long a star would take to radiate away its
thermal energy if nuclear reactions stopped

3 nuclear timescale — how long a star would take to exhaust its nuclear
fuel at the current rate
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Timescales

1 Dynamical timescale:
the timescale on which a star would expand or contract if it were not in
equilibrium; also called the free-fall timescale

τdyn ≡
characteristic radius

characteristic velocity
=

R

vesc

Escape velocity from the surface of the star:

vesc =

√
2GM

R
, so

τdyn =

√
R3

2GM

For the sun, τdyn ' 1100 s
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Timescales

1 Thermal timescale:
the timescale for the star to radiate away its energy if nuclear reactions were
switched off: also called the Kelvin-Helmhotz timescale
Total gravitational energy available

Egrav ∼
GM2

R

If the star radiates energy at L (J/s), then it can keep up this rate for

τth ∼
Egrav

L
∼ GM2

RL

For the sun, τth ∼ 3× 107 y � age of Earth.
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Timescales

1 Nuclear timescale: times to exhaust nuclear fuel at current rate.

τnuc ∼
ηMcc

2

L

where η is an efficiency factor for nuclear fusion: η ∼ 0.7% (see next
lecture), and Mc is the mass of the core.
For the sun, τnuc ∼ 1010 y
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Timescales

For stars,
τdyn � τth � τnuc

τdyn = timescale of collapsing star, e.g. supernova
τth = timescale of star before nuclear fusion starts, e.g. pre-main
sequence lifetime
τnuc = timescale of star during nuclear fusion, i.e. main-sequence lifetime
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Timescales

Most stars, most of the time, are in hydrostatic and thermal equilibrium,
with slow changes in structure and composition occurring on the (long)
timescale τnuc as fusion occurs.
If something happens to a star faster than one of these timescales, then
it will NOT be in equilibrium.
e.g. sudden addition of energy (nearby supernova?), sudden loss of mass
(binary interactions)

Lecture 5: Stellar structure Timescales 22 / 28



Structure again

We have derived two of the equations which define the structure of stars:

dP

dr
= −GM

r2 ρ hydrostatic equilibrium

dM

dr
= 4πr2ρ mass conservation

We need two more equations
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Equation of energy generation

Assume the star is in thermal equilibrium, so at each radius T does not
change with time.
Rate of energy generation/unit mass = ε. Then

r

Shell mass dm = 4πr2ρdr
Luminosity at r: L(r)
Luminosity at r + dr: L(r) + dL

dL = 4πr2ρdr × ε

so
dL

dr
= 4πr2ρε

the equation of energy
generation

Lecture 5: Stellar structure Structure again 24 / 28



Equation of energy transport

Fourth equation describes how energy is transported through the layers
of the star, i.e. how the gas affects the radiation as it travels through.
Depends on local density, opacity and temperature gradient.
Will not derive here, but quote result:

dT

dr
= − 3

4ac

κρ

T 3

L

4πr2

the equation of energy transport. a is called the radiation constant
and has the value

a =
4σ

c
= 7.566× 10−16 Jm−3K−4

where σ = 5.670× 10−8 W m−2 K−4 is the Stefan-Boltzmann constant.
Comes from considering radiation pressure.
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Equations of stellar structure

This gives us four equations in four unknowns — m(r), L(r), ρ(r) and
T (r) — so enough for a solution, provided we know P (ρ, T ), κ and ε.
Also need boundary conditions:

centre of star (r → 0): M → 0, L→ 0
surface of star (r → R∗): T → Ts, P → 0, ρ→ 0

The calculation of full stellar models is a very hard problem, and must
be done numerically, since in general κ and (especially) ε are strong
functions of density and temperature.
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Stellar models

Some progress can be made by making simplifying assumptions, e.g. if
pressure is only a function of density, then the first two equations can be
solved independently from the equations involving temperature.
We will be investigating numerical models of stars in Lab 2.
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Next lecture

is our first computer lab. This will be held in

SNH Learning Studio 4003

where we will be exploring the Saha-Boltzmann equation.

Review your 2nd year Matlab notes, and perhaps bring them to the lab
for reference.
Please read the exercises before the lab. There’s a lot in there (mostly
repeat of lecture material), so don’t want to lose time.
If you can’t make Friday’s session, there’s also a lab on now (10–11 am
Wednesday).
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