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Mass ranges

Last lecture we identified four regions of the HR diagram:
red dwarfs: M < 0.7M�. Main sequence lifetime exceeds age of
Universe
low-mass: 0.7M� < M < 2M�. End lives as WD and possibly PN
intermediate-mass: 2M� < M < 8–10M�. Similar to low-stars but at
higher L; end as higher mass WD and PN
massive: M > 8–10M�. Distinctly different evolutionary paths; end as
supernovae, leaving neutron stars or black holes
Boundaries uncertain, mass ranges approximate.
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Convection

Before we talk about evolution, discuss convection
Recall the equation of energy transport,

dT

dr
= � 3
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⇢

T 3

L
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describing the temperature gradient when energy is carried by radiation.
If luminosity L or opacity  are large ) large (negative) value of dT/dr.
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Convection

For an ideal gas, the energy density (energy per unit volume) is given by
3
2nkT where n is the number density of particles.
Hot gas near the centre of the star has higher energy density than cooler
gas above.
If we could ‘swap’ the gas over, we could transport energy outward.
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Convective instability

Imagine displacing a small mass element vertically upward by
a distance dr

Assume that no heat is exchanged with surrounding gas, i.e.
process is adiabatic
Element expands to stay in pressure balance with new
environment
New density will in general not equal ambient density at new
location

Initially After displacement
Surroundings ⇢(r) ⇢(r + dr)
Element ⇢(r) ⇢⇤
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Convective instability

If
⇢⇤ > ⇢(r + dr) then the displaced element will be denser than the
surroundings and will settle back down ) stable
⇢⇤ < ⇢(r + dr) then buoyancy will cause the element to rise even further
) convective instability
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Convective instability

Condition for stability can be shown to depend on the temperature
gradient. The condition for stability is

✓
dT

dr

◆

star

<

✓
dT

dr

◆

adiabatic

If the temperature gradient in the star is steeper than the temperature
gradient when an element is moved adiabatically, then this leads to the onset
of convection.
Large luminosities and/or large opacities lead to convection.
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Convection

Low mass stars: near the surface opacity is large due to atomic
processes ) surface convection zones
High mass stars: very high luminosities, L ⇠ M4, all generated close
to core ) core convection
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Evolution of a massive star

Massive stars, with M > 8–10M�, have different evolutionary paths to
low-mass stars. The main differences are

L remains approximately constant in spite of internal changes, so the track in the
HR diagram is almost horizontal.
Massive stars can undergo the whole sequence of thermonuclear reactions, all the
way up to Fe
Mass-loss is important at all stages of the star’s evolution
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Paths in the HR diagram for stars of different mass. (From Iben 1967, Science 155, 785)
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Constant luminosity

Basic physics for how stars evolve is the same, but observational
consequences are quite different
Most notably, massive stars evolve at nearly constant luminosity. This is
consequence of radiation pressure being important for massive stars (=
photon gas); massive stars are already radiating at ⇠ their maximum
luminosity (Eddington luminosity – will discuss later)
After they leave the MS and begin burning H in shells, massive stars
cannot increase their luminosity, but they can increase their radius and
go to lower effective temperature ) massive stars never have a red giant
phase, since that would require an increase in luminosity.
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Internal structure

Just as for low-mass stars, when the collapsing core reaches high enough
temperature the triple-↵ process can begin. Unlike the low-mass stars,
however, helium burning begins when the core is non-degenerate (lower
density). There is no helium flash; the onset of He burning is gradual.
Again, the triple-↵ process liberates less energy per unit mass than for
H-burning, so the lifetime is correspondingly shorter (⇠ 10% of the MS
lifetime).
Once the He core has been converted to 12C and 16O, He burning stops,
the core recommences its collapse, and a He burning shell ignites outside
the core.
This time, the temperature rises high enough for C and O to burn to Mg
and Si (see lecture 7).
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C and O burning

C burning requires T ⇠ 6⇥ 108 K
Several reactions are involved, e.g.

12C + 4He ! 16O + �
12C + 12C ! 20Ne + 4He + �

! 23Na + 1H + �

! 23Mg + n+ �
16O + 4He ! 20Ne + �
16O + 16O ! 28Si + 4He + � etc.

28Si burning has hundreds of possible reactions, producing a host of
nuclei.
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C and O burning

Typical reaction network for a nova explosion
http://www.york.ac.uk/physics/research/nuclear/nuclear-astrophysics/structure-astro/
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Stars have layers

This pattern of core ignition and shell ignition continues, until the star
develops a layered structure.
Heavier and heavier elements are built up, until the iron group elements
of Ne, Fe and Co are formed. The core is surrounded by a series of shells
at lower T and lower ⇢.

Typical timescales (15M� star)

Phase ⌧ (yrs)
Hydrogen (MS) 10⇥ 106

Helium 1⇥ 106

Carbon 400
Oxygen 1
Silicon 10�2
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Website of the Week:

SIMBAD
http://simbad.u-strasbg.fr/simbad/
Astronomical database for basic data, cross-identifications, bibliography and

measurements for astronomical objects outside the solar system.
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Mass loss

Even on the main sequence, massive stars can lose significant amounts of
mass. The winds are driven by radiation pressure: UV photons from a
hot, very luminous star are absorbed by the optically thick outer
atmosphere layers.
An extreme example of this is the massive star ⌘ Car (⇠ 100M�).

Brightness has changed by
nearly 10 mags over the
last 200 yr; for a while it
was one of the brightest
stars in the sky.
from http://etacar.fcaglp.unlp.edu.ar/
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⌘ Carinae

Hubble images show the star is surrounded by two enormous bubbles of
gas

150 years ago the star
erupted in a huge wind,
during which it lost a
solar mass of material
Cooling cloud of gas now
hides the star, dimming
its light
⌘ Car from the Hubble Space Telescope
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⌘ Carinae

X-ray images show a hot
central source (star), a hot
inner core about 3 light
months in diameter, and
an outer ring about two
light years in diameter.
Must be the remnant of
another large explosion
> 1000 yr ago

xo
⌘ Car from Chandra, www.chandra.harvard.edu/photo/1999/0099/
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⌘ Carinae

⌘ Car is an example of a luminous blue variable — stars with
M > 85M� which lose mass in a rapid and unstable manner.
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Wolf-Rayet stars

Less massive stars also lose large amounts of mass, though in a less
violent manner. The Wolf-Rayet stars have atmospheres containing very
little hydrogen: they are essentially the bare cores of massive stars.

WR stars lose mass at
rates ⇠ 10�5M�/year,
producing spectacular
nebulae which can look
like planetary nebulae.

HST image of the Wolf-Rayet star WR124,
showing the star surrounded by hot
clumps of gas being ejected at high speed.
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“Thor’s Helmet” (NGC 2359), a bubble-like nebula blown from the hot Wolf-Rayet star in its centre.
http://antwrp.gsfc.nasa.gov/apod/ap021205.html
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Mass loss and the fate of stars

The amount of mass lost can have a dramatic effect on the fate of the
star. Our own Sun has a solar wind which reaches speeds of
400–700 km s�1 with a mass loss rate of about 10�14 M�/yr. Over a ten
billion year lifespan, at this rate the Sun will lose about 0.01% of its
mass to the solar wind.
By contrast, the winds from hot stars can be a billion times stronger,
losing up to 10�5 M�/yr at speeds of up to 3000 km/s. This means that
even during the much shorter lives of the stars (a few million years), they
can lose on the order of half or more of their mass: a 100M� star may
have a mass of only 30M� by the time it leaves the main sequence.
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Mass loss and the fate of stars

This has substantial implications for the evolution of the star. Reducing
the mass of the star reduces the pressure and temperature in the interior,
which can reduce the mass of the core.
And it is the mass of the core when fusion stops which governs whether
the star explodes as a supernova, and what kind of remnant it leaves
behind.
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Without mass loss

Woosley, Heger and Weaver 2002, Rev Mod. Phys. 74, 1015; http://adsabs.harvard.edu/abs/2002RvMP. . . 74.1015W
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With mass loss

Woosley, Heger and Weaver 2002, Rev Mod. Phys. 74, 1015; http://adsabs.harvard.edu/abs/2002RvMP. . . 74.1015W
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Next lecture

Supernovae
Core collapse
Supernovae
Type Ia supernovae
SN 1987A
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