
Lecture 10: Stellar remnants

Senior Astrophysics

2018-04-10

Senior Astrophysics Lecture 10: Stellar remnants 2018-04-10 1 / 30



Outline

1 Stellar remnants

2 White dwarfs

3 Neutron stars

4 Black holes

5 Next lecture

Senior Astrophysics Lecture 10: Stellar remnants 2018-04-10 2 / 30



End states of stellar evolution

We have seen that the mass of the star determines the way it evolves, and
hence also the final outcome of its evolution. Depending on the star’s mass, a
different remnant will be left behind.

M Remnant
< 0.5M� τ > Hubble time
0.5 < M/M� < 8 WD + planetary nebula
∼ 8 < M/M� < ? core collapse + SN → NS or BH (?)
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White dwarfs

First white dwarf discovered: Sirius B. Mass was known
from the orbit: MB ∼ 1.05M� (compared with 2.3M�
for Sirius A)
1000 times fainter than Sirius A, but much hotter:
T ∼ 27, 000 K compared with 9900 K. This implied a
radius (from the Stefan-Boltzmann law) of R ∼ 5.5× 106

m = 0.008R�, or about the size of the Earth.
Estimate the density: ρ ∼ 109 kgm−3 !!
It is estimated that there are about 35 billion white
dwarfs in the Galaxy, possibly as many as 100 billion.
They are by far the most common stellar remnant in the
Galaxy (∼ 97% of evolved stars).

Optical (top) and X-ray
(bottom) images of

Sirius A and B, which
are an A-type star and a
white dwarf. The optical
image is dominated by
the main sequence star,
the X-ray image by the

white dwarf.
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Degeneracy pressure

White dwarfs are no longer producing energy in their interiors, so they
cannot support themselves against gravity using gas pressure.
Fowler and Chandrasekhar in the 1920s suggested they are supported by
degeneracy pressure.
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Degeneracy pressure

For an ordinary classical gas, Pgas ∝ T → 0 as T → 0. Also, the mean
particle speed v =

√
2kT/m→ 0.

Now, the gas particles have momentum px = mvx, py = mvy, pz = mvz,
so as T decreases the particles concentrate near the origin in px, py,
pz–space:
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Degeneracy pressure

At low enough temperatures / high enough densities, the concentration of
particles with similar (low) momenta would violate the Pauli exclusion
principle, that no two electrons can occupy the same quantum state. This
means that electrons in a dense, cold gas must have larger momentum than
we would predict classically. Then, since the pressure depends on the
momentum of particles

P =
1

3

∫ ∞
0

nppv dp

this means that such gas has an extra source of pressure, which we call
degeneracy pressure.

Lecture 10: Stellar remnants White dwarfs 7 / 30



Derivation of degeneracy pressure
Consider the simplest case, of a gas of electrons at zero temperature, so all
the quantum states up to some momentum pF are occupied, but no states
higher than pF are occupied.
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Derivation of degeneracy pressure

Consider a group of electrons Npδp with momenta in the range p+ δp.
The volume of momentum space occupied by these electrons is the
volume of a shell of radius p, thickness δp: 4πp2δp.
Heisenberg’s principle says that the number of electrons in a volume of
phase space h3 must be at most 2, so the number of quantum states, per
unit volume, with momenta in the range p+ δp is

ne(p) dp =
2

h3
4πp2 dp p ≤ pF

= 0 p ≥ pF

Lecture 10: Stellar remnants White dwarfs 9 / 30



Derivation of degeneracy pressure

The total number of electrons per unit volume is found by integrating over
all possible momenta:

ne =

∫ ∞
0

ne(p) dp =
8π

h3

∫ pF

0

p2 dp =
8πp3F
3h3

Rearrange this to find the maximum (or Fermi) momentum:

pF =

(
3h3ne
8π

)1/3
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Derivation of degeneracy pressure

Hence the pressure of this degenerate gas of electrons is

P =
1

3

∫ ∞
0

v p ne(p) dp

=
1

3

∫ pF

0

(
p

me

)
p
2

h3
4πp2 dp

or

Pdeg =
8π

15meh3
p5F =

h2

20me

(
3

π

)2/3

n5/3e

the degeneracy pressure.
Note that this depends only on fundamental constants and the
density.
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Degeneracy pressure

Degeneracy pressure, non-relativistic:

Pdeg =
h2

20me

(
3

π

)2/3

n5/3e

For a relativistic degenerate gas (p� mec; v → c and p→∞), the
corresponding pressure is

Pdeg =
1

8

(
3

π

)1/3

hc n4/3e
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Degeneracy pressure

We need to convert the electron density ne to mass density ρ: For each H
atom (mass mH) there is one electron, while for heavier elements there is
∼ 1

2e
− for each mH. Thus

ne =
ρX

mH
+
ρ(1−X)

2mH
=
ρ(1 +X)

2mH

where X is the hydrogen fraction.
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Degeneracy pressure

Thus we get

non-relativistic relativistic
Pdeg = K1ρ

5/3 Pdeg = K2ρ
4/3

where

K1 =
h2

20me

(
3
π

)2/3 (1+X
2mH

)5/3
K2 =

hc
8

(
3
π

)1/3 (1+X
2mH

)4/3
Most importantly, the pressure does not depend on temperature; it depends
only on the density and chemical composition.
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Degeneracy pressure
Degeneracy is important for “cold” gases: when the Fermi momentum pF is
much larger that the (classical) momentum from thermal motion

mev = (2meE)
1/2 = (3mekT )

1/2

i.e. when

kT � h2n
2/3
e

me

So degeneracy depends on density as well as
temperature.
(Note that “cold” gases can have quite high
T !)
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Mass-radius relation
Since white dwarfs are supported by degeneracy pressure, we can find the
relation between the mass Mwd of a white dwarf and its radius Rwd by
setting our crude estimate for the central pressure of a star (from lecture 5)
equal to the degeneracy pressure: Recall from lecture 5 that we used the
equation of hydrostatic equilibrium and assumed the star had constant
density to derive an expression for the central pressure

Pc ∼
3GM2

4πR4

Set this estimate equal to the degeneracy pressure

3GM2

4πR4
= K1ρ

5/3 = K1

(
M

4
3πR

3

)5/3
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Mass-radius relation

Hence
R ∝M−

1
3

i.e. more massive white dwarfs are smaller.
This in turn implies that for a white dwarf

MV = constant

Because the white dwarf is supported by electron degeneracy pressure, the
only way to provide more support for a larger star is to confine the electrons
more closely. In fact, the mass–volume relation implies that ρ ∝M2.
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Mass-radius relation

However, the higher the density, the more relativistic the electrons
become. The electron speed approaches c (pF � mec), so there is less
pressure available to counteract the mass, so massive white dwarfs have
smaller radii than predicted by the mass-volume relation. In fact, as the
mass increases the radius goes to zero for a finite value of the mass: there
is a maximum mass that can be supported by electron degeneracy
pressure.
This limiting mass is called the Chandrasekhar mass.
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The Chandrasekhar mass
The limiting (Chandrasekhar) mass is the limit when the electrons are
completely relativistic, so just equate the central pressure with the
degeneracy pressure for relativistic electrons:

3GM2

4πR4
= K2ρ

4/3 = K2

(
M

4
3πR

3

)4/3

R cancels out, and we get an expression for M which depends only on mH

and fundamental constants. These constants — h, c and G — represent the
effects of quantum mechanics, relativity and Newtonian gravitation.

MCh ∼
3
√
π

16

(
~c
G

)3/2(1 +X

2mH

)2

= 0.44M�

A more accurate calculation gives MCh = 1.44M�.
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The Chandrasekhar mass
The Chandresekhar mass is independent of the radius; in fact, it depends
only on fundamental constants. In other words, a completely relativistic
white dwarf has a unique mass. (Real white dwarfs are partially relativistic).

This turns out to be the maximum mass a
white dwarf can have.
The measured masses of white dwarfs are
strongly peaked at M ∼ 0.6M�; the
highest mass WD measured is 1.33M�.
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(g = log of surface gravity in cm s−2); from Kepler et al. MNRAS 375 1315 (2007)

Lecture 10: Stellar remnants White dwarfs 22 / 30



Neutron stars

We have seen that a neutron star forms from the collapsing core of a
massive star.
If the mass of the remnant exceeds the Chandrasekhar mass MCh,
electron degeneracy pressure cannot support the star. Instead, neutron
stars are supported by neutron degeneracy pressure: since neutrons
are also fermions, their behaviour is analogous to the behaviour of
electrons.
We can estimate the radius of the neutron star using the same argument
we used for an electron gas: a 1.4M� neutron star has R ∼ 10–15 km,
ρ ∼ 6× 1017 kgm−3 ∼ nuclear density. A neutron star is like a nucleus
with mass number A ≈ 1057.
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Neutron star mass limit

There is also an upper limit to the mass of a neutron star, corresponding
to the Chandrasekhar mass. Above this mass, neutron degeneracy
pressure is unable to balance the neutron star’s self-gravity. However, the
exact value is not well known; the details depend on GR and the details
of the equation of state. The upper limit is less that ∼ 3M�; above this
limit, the neutron star will collapse to a black hole.
Observed masses for neutron stars are typically very close to the
Chandrasekhar mass; the most massive pulsar has a mass 1.97± 0.04M�
(Demorest et al. 2010).
It is not clear if all neutron stars are born at the Chandrasekhar mass, or
some are born massive.
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van der Meer et al., A&A 473, 523 (2007)
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Observations of neutron stars

Since neutron stars are so small, how do you find them?
Serendipitous discovery as pulsating radio sources by Jocelyn Bell in
1967.
Rapid regularly spaced pulses with P = 1.337 s→ source must be small.

Individual pulses from PSR 0329+54, with P=0.714s
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Pulsars are rotating neutron stars

Pulsars are rapidly rotating NS with strong magnetic field. e– are
accelerated along magnetic field lines, and radiation is beamed in the
acceleration direction.

The magnetic field not aligned with
rotational axis → get flash of radio
waves once per spin period
(“lighthouse model”). Only see pulsars
beamed towards us (f = 10–20%?)
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Black holes

The theory of black holes is based entirely on General Relativity, and is
beyond the scope of this course. However, we can make some simple
arguments:
In Newtonian gravity, the escape speed for a particle from an object with
mass M and radius R is

vesc =

√
2GM

R

This becomes greater than c at a radius

RS =
2GM

c2
= 3 km

M

M�

the Schwarzschild radius. Remarkably, this is the same expression as
given by GR.
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Finding black holes

We can only find black holes via their gravity, so binary star systems are
an ideal hunting ground. We will talk about binaries for the next few
lectures.
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Next lecture

Binary stars
Observed characteristics
Interacting binaries
Gravity in a rotating reference frame
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