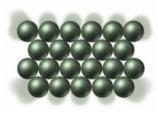
#### Lecture 3

# Phase change and heat capacity

Pre-reading: §17.6

#### Phases of matter

Matter can exist in different *phases*:


 gas: very weak intermolecular forces, rapid random motion



liquid: intermolecular forces bind closest neighbors



solid: strong intermolecular forces
A transition from one phase to another
is called phase change.



## Phase changes

Phase changes involve absorption or emission of heat.

So the transfer of heat into a system can change the *temperature* of the system, or the *phase*, or both.

#### Temperature change (no phase change)

The amount of heat Q needed to increase the temperature of a mass m from  $T_1$  to  $T_2$  is proportional to the temperature change  $\Delta T = T_2 - T_1$ :

 $Q = m c \Delta T$ 

*c* is the *specific heat* of the material, and depends on the material. Units: J.kg<sup>-1</sup>.K<sup>-1</sup>

#### **Specific heat**

Water has a remarkably large specific heat.

| <u>Substance</u> | <u>c</u> (J.kg⁻¹.K⁻¹) |
|------------------|-----------------------|
| Aluminum         | 910                   |
| Copper           | 390                   |
| Ice              | 2100                  |
| Water            | 4190                  |
| Steam            | 2010                  |
| Air              | 1000                  |
| Soils / sand     | ~500                  |

## Molar heat capacity

Sometimes it's more convenient to describe the amount of a substance in terms of *moles*.

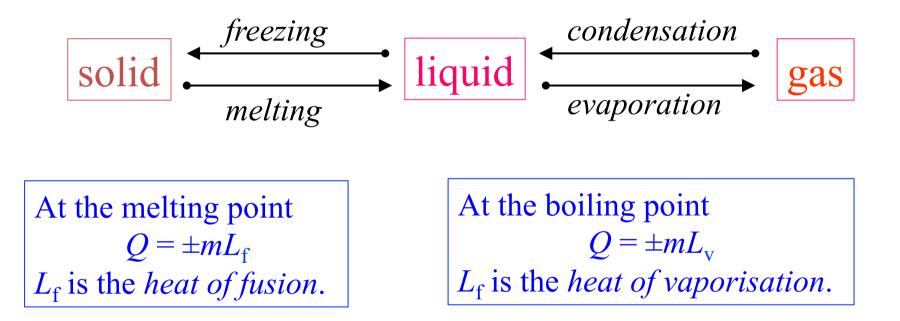
1 mole of any substance contains the same number of molecules: this number is called *Avogadro's number*  $N_{A}$ , where  $N_{A} = 6.02 \times 10^{23}$  molecules / mol

The mass *m* can be written as the mass per mole times the number of moles: m = nM.

## Molar heat capacity

Write the specific heat equation using *M*:

$$Q = mc\Delta T$$
$$Q = nMc\Delta T$$


so we define

$$Q = nC\Delta T$$

where *C* is the *molar heat capacity*. Units: J.mol<sup>-1</sup>.K<sup>-1</sup>

#### Phase change

Heat transfer is involved in phase changes:

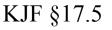


The process is reversible, and there is no change in *T*. Q > 0: energy *absorbed*, Q < 0: energy *released* during the phase change.

#### Heats of fusion and vaporisation

| Substance     | Melting<br>Point<br>(°C) | Latent Heat<br>of Fusion<br>( J/kg) | Boiling<br>Point<br>(°C) | Latent Heat of<br>Vaporization<br>(J/kg) |
|---------------|--------------------------|-------------------------------------|--------------------------|------------------------------------------|
| Helium        | -269.65                  | $5.23 \times 10^3$                  | - 268.93                 | $2.09 \times 10^4$                       |
| Nitrogen      | -209.97                  | $2.55 \times 10^4$                  | -195.81                  | $2.01 \times 10^5$                       |
| Oxygen        | -218.79                  | $1.38 \times 10^4$                  | -182.97                  | $2.13 \times 10^{5}$                     |
| Ethyl alcohol | -114                     | $1.04 \times 10^5$                  | 78                       | $8.54 \times 10^5$                       |
| Water         | 0.00                     | $3.33 \times 10^{5}$                | 100.00                   | $2.26 \times 10^{6}$                     |
| Sulfur        | 119                      | $3.81 \times 10^4$                  | 444.60                   | $3.26 \times 10^5$                       |
| Lead          | 327.3                    | $2.45 \times 10^{4}$                | 1 750                    | $8.70 \times 10^{5}$                     |
| Aluminum      | 660                      | $3.97 \times 10^{5}$                | 2 450                    | $1.14 \times 10^{7}$                     |
| Silver        | 960.80                   | $8.82 \times 10^4$                  | 2 193                    | $2.33 \times 10^{6}$                     |
| Gold          | 1 063.00                 | $6.44 \times 10^{4}$                | 2 660                    | $1.58 \times 10^{6}$                     |
| Copper        | 1 083                    | $1.34 \times 10^5$                  | 1 187                    | $5.06 \times 10^{6}$                     |

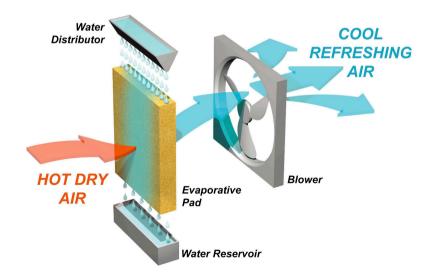
## Where does the energy go?


The latent heat of vaporization is the energy required to give molecules sufficient kinetic energy to break the inter-molecular bonds that keep molecules relatively fixed in the solid state, so that the molecules can move around and enter a gaseous state.

# **Evaporation and cooling**

As a liquid evaporates, it extracts heat from its surroundings and hence the surroundings are cooled.



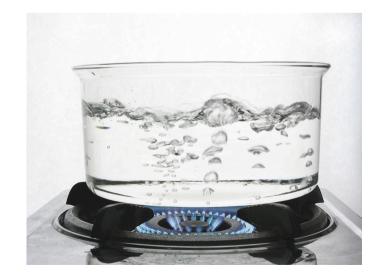

©1998 Oklahoma Climatological Survey. All rights reserved.



# **Evaporation and cooling**

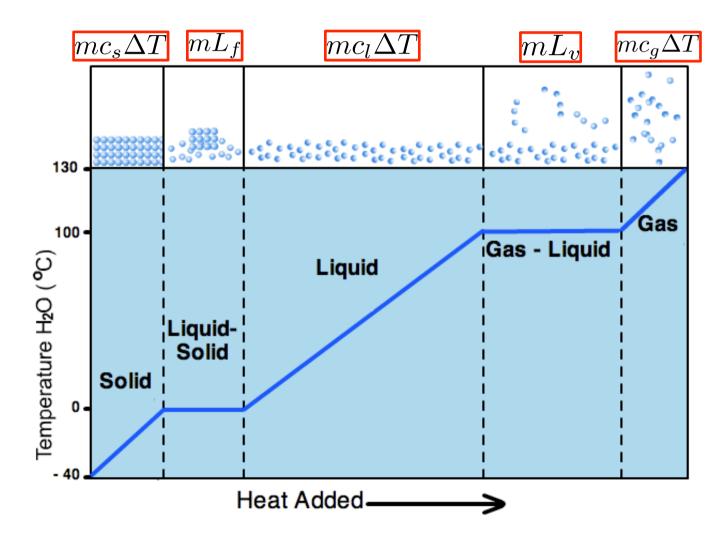
Examples:

- why do you feel uncomfortable on hot humid days?
- why do fans make you feel cooler?
- evaporative cooling can be used to cool buildings




## Problem

If you have 1.0 kg of water at a temperature of 10°C, how much heat energy needs to be added for it all to become steam?

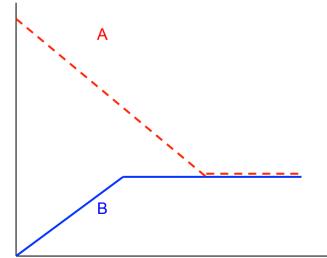

 $c_{water} = 4200 \ J. \ kg^{-1}.K^{-1}$ 

 $L_v = 2.3 \times 10^6 J.kg^{-1}$ 



#### Heating curve

Simple model for heating water at a constant rate:




| Specific heat                   |                                             | Latent heats                                                                                                                                                                                                |
|---------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substance<br>Aluminum<br>Copper | <u>c (J.kg⁻¹.K⁻¹)</u><br>910<br>390<br>2100 | Latent heat – phase change<br>Water – large values of latent heats at<br>atmospheric pressure<br>$L_f = 3.34 \times 10^5$ J.kg <sup>-1</sup> (273 K)<br>$L_v = 2.26 \times 10^6$ J.kg <sup>-1</sup> (373 K) |
| Water                           | 4190                                        |                                                                                                                                                                                                             |
| Steam<br>Air<br>Soils / sand    | 2010<br>1000<br>~500                        |                                                                                                                                                                                                             |
| Solis / Sanu                    | ~500                                        |                                                                                                                                                                                                             |

## Problem

A sample of liquid water A and a sample of ice B of identical masses, are placed in a thermally isolated container and allowed to come to thermal equilibrium. The diagram below is a sketch of the temperature T of the samples verses time t. Answer each of the following questions and justify your answer in each case.

- Is the equilibrium temperature above, below or at the freezing point of water?
- 2. Does the ice partly melt, or does it undergo no melting?



#### Problem (2004 exam)

What mass of steam at 130 °C must be condensed onto a 0.100 kg glass cup to warm the cup and the 0.200 kg of water it contains from 20.0 °C to 50.0 °C?

Data:

specific heat capacity of steam  $c_s = 2.01 \times 10^3 \text{ J.kg}^{-1} \text{.K}^{-1}$ specific heat capacity of water  $c_w = 4.19 \times 10^3 \text{ J.kg}^{-1} \text{.K}^{-1}$ specific heat capacity of glass  $c_g = 8.37 \times 10^2 \text{ J.kg}^{-1} \text{.K}^{-1}$ latent heat of vaporisation of water  $L = 2.26 \times 10^6 \text{ J.kg}^{-1}$ 

#### Next lecture

#### Mechanisms of heat transfer

*Read*: KJF §17.7