Oscillations

Periodic motion: motion that repeats from *equilibrium position* via *restoring force*. Parameters of motion: T, $f = \frac{1}{T}$, $\omega = 2\pi f$.

Simple harmonic motion if

$$F_x = -kx$$

Then

$$\omega = \sqrt{\frac{k}{m}}$$

frequency does not depend on amplitude.

Expression for displacement as a function of time

$$x = A\cos(\omega t + \varphi)$$

Energy

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \text{constant}$$

Examples of SHM:

• Simple pendulum: $\omega = \sqrt{g/L}$ for small angles

• Physical pendulum: : $\omega = \sqrt{\frac{mgd}{I}}$ for small angles

Damped oscillations: if damping force has form

$$F_x = -bv_x$$

then system oscillates with frequency

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} < \omega \quad \text{undamped frequency}$$

$$b = 2\sqrt{km} \quad \text{critical damping}$$

Driven oscillations/resonance: get peak amplitude with driving frequency $\omega_d=\omega$

Wave motion

Particles move in SHM ⇔ sinusoidal wave

Parameters f, λ , $v = f\lambda$

Wave function: describes particle displacement as a function of position and time

$$y(x,t) = A\cos(kx - \omega t)$$

Wave speed depends only on medium

• String: $v = \sqrt{F/\mu}$

• Fluid: $v = \sqrt{B/\rho}$

Standing waves: occur when wave is reflected

$$y(x,t) = (A\sin kx)\sin \omega t$$

Two fixed ends: normal modes

• String: $f_n = n \frac{v}{2L}$

• Open pipes: $f_n = n \frac{v}{2L}$ • Closed pipes: $f_n = n \frac{v}{4L}$, n odd

Be able to draw the different modes in a string or a pipe.

Interference:

- *Constructive* when $d = n\lambda$
- *Destructive* when $d = n\lambda/2$, n odd

Beats: $f_{beat} = |f_a - f_b|$

Doppler effect:

$$f_L = \frac{v + v_L}{v + v_S} f_S$$

Shock waves:

$$\sin \alpha = \frac{v}{v_S}$$

where v = sound speed, $v_S =$ source speed.