§15.2

Mechanical Waves

§15.1

Transverse

Longitudinal

Trans. & Long.

Figures courtesy D. Russell

Wave Function and Wave Equation

- Wave function gives displacement as function of space and time
- 1-D periodic wave: $y(x,t) = A \cos(\omega t \pm kx)$
- Wave equation relates changes in wave shape to its speed
- Wave equation is true statement for all waves

 $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$

§15.3

Speed of Mechanical Waves To find v, consider the forces, use Newton's 2nd law, calculate derivatives (complicated!) From wave eqn: v ≈ √(Acceleration / Curvature)

- Another way:
 v ≈ √(Restoring force / Inertia)
- 1-D transverse wave on string: $v = \sqrt{(F/\mu)}$
- Longitudinal wave in fluid: $v = \sqrt{(B/\rho)}$

• Sound wave in a gas: $v = \sqrt{(\gamma RT/M)}$ §15.4, 16.2

Next lecture

Interference and superposition

Read §15.6