Physics 1901

Experimental Astronomy – Graduate Course Autumn (Apr-May 2014)

Assoc. Prof. Andrew I. Sheinis ,
Australian Astronomical Observatory

Prof. Joss Bland-Hawthorn Sydney Institute for Astronomy

Some questions: (which you should be able to answer at the end of the course)

- What are the parts of a spectrograph
- Why are spectrographs so big?
- What sets the sensitivity?
- How do I estimate the exposure time?

ABCD Matrix Concepts

- Ray Description
 - Position
 - Angle
- Basic Operations
 - Translation
 - Refraction
- Two-Dimensions
 - Extensible to Three

Ray Vector

 $\mathcal{V}_1 = \begin{pmatrix} x_1 \\ \alpha_1 \end{pmatrix}$

Matrix Operation

 $\mathcal{V}_{out} = \mathcal{M} \mathcal{V}_{in}$

System Matrix

$$\mathcal{M}_{25} = \mathcal{R}_5 \mathcal{T}_{45} \mathcal{R}_4 \mathcal{T}_{34} \mathcal{R}_3 \mathcal{T}_{23}$$

Cascading Matrices (1)

Generic Matrix:

$$\mathcal{M} = \left(egin{array}{cc} m_{11} & m_{12} \ m_{21} & m_{22} \end{array}
ight)$$

Determinant (You can show that this is true for cascaded matrices)

$$Det \quad \mathcal{M} = \frac{n}{n'}$$

$$V_1$$
 R_1 R_2 V'_2

Light Travels Left to Right, but Build Matrix from Right to Left

$$\begin{pmatrix} x_2' \\ \alpha_2' \end{pmatrix} = \mathcal{R}_2 \begin{pmatrix} x_2 \\ \alpha_2 \end{pmatrix}$$

$$\begin{pmatrix} x_2 \\ \alpha_2 \end{pmatrix} = \mathcal{T}_{12} \begin{pmatrix} x_1' \\ \alpha_1' \end{pmatrix}$$

$$\begin{pmatrix} x_1' \\ \alpha_1' \end{pmatrix} = \mathcal{R}_1 \begin{pmatrix} x_1 \\ \alpha_1 \end{pmatrix}$$

$$\begin{pmatrix} x_2' \\ \alpha_2' \end{pmatrix} = \mathcal{R}_2 \mathcal{T}_{12} \mathcal{R}_1 \begin{pmatrix} x_1 \\ \alpha_1 \end{pmatrix}$$

$$\mathcal{M}_{12} = \mathcal{R}_2 \mathcal{T}_{12} \mathcal{R}_1$$

The Simple Lens (Matrix Way)

$$\mathcal{M}_{VV'} = \mathcal{R}_2 \mathcal{T}_{12} \mathcal{R}_1$$

Building The Simple Lens Matrix

Simple Lens Matrix

$$\left(egin{array}{ccc} 1 & 0 \ -P_2 & n_\ell \ n' & n' \end{array}
ight) \left(egin{array}{ccc} 1 & z_{12} \ 0 & 1 \end{array}
ight) \left(egin{array}{ccc} 1 & 0 \ -P_1 & n \ n_\ell \end{array}
ight)$$

Here is what we did last time for a lens system

$$\mathcal{M}_{VV'} = \mathcal{R}_2 \mathcal{T}_{12} \mathcal{R}_1$$

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$M_{oi} = \tau_{32} R_2 \tau_{21} R_1 \tau_1$$

$$M = \begin{pmatrix} H & G \\ F & E \end{pmatrix} \qquad \begin{array}{c} x'_n = Hx + G\gamma \\ \gamma'_n = Fx + E\gamma \end{array}$$

$$M_{oi} = \tau_{32} R_2 \tau_{21} R_1 \tau_1$$

Where

$$H = A + iC$$

$$G = -o - ioC + B + oD$$

$$F = C$$

$$E = D - Co$$

Using the System Matrix Case 1: E=0

Output angle independent of input angle

$$x'_{n} = Hx + G\gamma$$
$$\gamma'_{n} = Fx + E\gamma$$

$$o = \frac{D}{C}$$

Front focal distance!

Using the System Matrix Case 2: H=0

Output height independent of input height Output height proportional to input angle

$$x'_{n} = Hx + G\gamma$$
$$\gamma'_{n} = Fx + E\gamma$$

$$i = \frac{-A}{C}$$

Back focal distance!

Using the System Matrix

Case 3: F=0

Output angle independent of input height Telescope condition!

$$x'_{n} = Hx + G\gamma$$
$$\gamma'_{n} = Fx + E\gamma$$

$$E = \frac{\gamma}{\gamma}$$

Angular magnification

Using the System Matrix Case 3: G=0

Rays emitted at a fixed height arrive at a fixed height independent of angle

$$x_n' = Hx + G\gamma$$

$$x'_{n} = Hx + G\gamma$$
$$\gamma'_{n} = Fx + E\gamma$$

Object and image distances!

$$i = \frac{Ao - B}{D - Co}$$

$$o = \frac{B + Di}{A + Ci}$$

Now you can use the matrix representation to solve for Entrance Pupil and Exit Pupil for any system!

Now can calculate the exit pupil.

Geometric Theory of Aberrations (Eikonal analysis, what's an eikonal?)

Geometric Theory of Aberrations (Eikonal analysis)

$$Z_{real} - Z_{ideal} = S\rho^4 - CyY\rho^2 + Ay^2Y^2 + Ky^2\rho^2 + Dy^3Y$$

Where

$$Z = OPD$$

$$\frac{d\Delta Z}{d\rho} = slope angle (radians)$$
= Spherical

S= Spherical

C=Coma

A=Astigmatism

K=Field Curvature

D=Distortion

Spherical Aberration

Longitudinal and Transverse Spherical Aberration

Astigmatism

Field Curvature

Axial Chromatic Aberration

How to "fix" aberrations

$$Z_{real} - Z_{ideal} = S\rho^4 - CyY\rho^2 + Ay^2Y^2 + Ky^2\rho^2 + Dy^3Y$$

On-axis > y=0

$$Z_{real} - Z_{ideal} = S\rho^4$$

$$Z_{real}^2 - A_1 Z_{real} - A_2 \rho^2 = A_3$$

This is a parabola. Perfect image quality, zero field.

How to "fix" aberrations

$$Z_{real} - Z_{ideal} = S\rho^4 = (n-1)T$$

$$T = \rho^4 / (S(n-1))$$

$$T = \frac{\rho^2}{2R} - \frac{\rho^4}{4R^3(n-1)}$$

End lecture 2