Physics 1901

Experimental Astronomy – Graduate Course Autumn (Apr-May 2014)

Assoc. Prof. Andrew I. Sheinis ,
Australian Astronomical Observatory

Prof. Joss Bland-Hawthorn Sydney Institute for Astronomy

Some questions: (which you should be able to answer at the end of the course)

- What are the parts of a spectrograph
- Why are spectrographs so big?
- What sets the sensitivity?
- How do I estimate the exposure time?

Telescope

Anamorphic factor,

$$r = D_{coll}/D_{cam}$$

Thought Experiment:

You observe the moon using an eyepiece attached to a 8 meter telescope. What is the relative brightness of the image compared to naked-eye viewing? (or will this blind you?) assume your eye has an 8mm diameter pupil.

- A) Brightness= $(8e3/8)^2$ =1,000,000 times
- B) Brightness=(8e3/8)=1,000 times
- C) The same, Brightness is conserved!

- Surface brightness is the energy per unit angle per unit area falling on (or passing through) a surface.
- Conserved for Finite size source (subtends a real angle)
- Also called
 - Specific intensity
 - Brightness, surface brightness
 - Specific brightness
- Units: (Jy sr⁻¹) or (W m⁻² Hz⁻¹sr⁻¹) or (erg cm⁻² Hz⁻¹) or (m arcsec⁻²)

Rybicki and Lightman,

Radiative Processes in Astrophysics (1979), Ch1

- Surface brightness is the energy per unit angle per unit area falling on (or passing through) a surface.
- Conserved for Finite size source (subtends a real angle)
- Also called
 - Specific intensity
 - Brightness, surface brightness
 - Specific brightness
- Units: (Jy sr⁻¹) or (W m⁻² Hz⁻¹sr⁻¹) or (erg cm⁻² Hz⁻¹) or (m arcsec⁻²)

$$dE = S dA d\Omega$$

- Omega = solid angle of incoming beam measured at any surface
- I.e. Measured in RA and Dec on the sky (from the pupil)
- Measured in square degrees at the image plane
- dA = area measured in square meters
- For a resolved object, Surface Brightness is Conserved!
- Includes lenses treated as objects, very important for NIR
- For an unresolved object SB is decreases (2nd Law of Thermo)
- Fiber optics do not conserve SB.
- Diffraction does not conserve surface brightness.

$$dE = S \cdot losses \cdot emission \cdot dA d\Omega$$

- Omega = solid angle of incoming beam measured at any surface
- I.e. Measured in RA and Dec on the sky (from the pupil)
- Measured in square degrees at the image plane
- dA = area measured in square meters
- For a resolved object, Surface Brightness is Conserved!
- In the thermal IR, the SB is only a function of T and emissivity.
- Includes lenses treated as objects, very important for NIR
- For an unresolved object SB is decreases by diffraction (2nd Law of Thermo)
- Fiber optics do not conserve SB.
- Diffraction does not conserve SB.

Energy Collected

$$E = SA\Omega$$

- S is a constant (modulo absorption)
- Energy collected by an optical system is proportional to $A\Omega$
- Conservation of energy implies $A\Omega$ is a constant.
- Also called Optical invariant, etendu
- S is also called the phase space density: Louivilles theorm
- In order maximize energy collected you want to maximize A Omega and minimize absorption!

How do I calculate the number of photo electrons/s on my detector?

- For an extended object in the IR that is easy: You just need the temperature of the source, the system losses (absorption, QE etc), resolution and etendu of a pixel. No telescope aperture or F/#, no slit size, no optical train!
- For an extended object in the visible: You just need the surface brightness of the source, the system losses (absorption, QE etc), resolution and etendu of a pixel. No telescope aperture or F/#, no slit size, no optical train!
- For an unresolved object, you need the source magnitude, telescope aperture, plate scale, resolution, and pixel size.

Ex 1: Thermal Imaging

R=5000

Pixel size= 10 microns

Final focal ratio at detector = F/3

Source temperature=5000K

Operating near 2 microns

SB from Planck=1,157,314 watts/(m² sr micron) $\Delta\lambda$ =2 microns/5000=0.0004

Solid Angle =
$$\frac{\pi/4}{(F/\#)^2}$$

$$E = I_{\lambda} A\Omega \ QE \ \Delta \lambda = (1157314)(10 \cdot 10^{-6})^{2} (\pi/4)(1/3)^{2} (0.0004)$$
$$= 4.039 \cdot 10^{-9} \ watts$$

$$Nphots = E/hv$$

$$= \frac{(4.039 \cdot 10^{-9}) \cdot (2 \cdot 10^{-6})}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}} = 4.06 \cdot 10^{10}$$

Energy Collected

$$E = IA\Omega$$

Energy Collected $E = IA\Omega$

Specific Surface Brightness

$$dE = I_{\nu}(\Omega, \nu, t, p) d\Omega d\nu dt dA$$

Where I will depend on:

- Omega measured in RA and Dec
- v= frequency
- t= Integration time
- P=polarization
- Location where you are receiving the light.

Observation

$$E = \int S_{v}(\Omega, v, t, p) r(\Omega) F(v) d\Omega dv dt dA$$

$$E = A \delta t \int S_{v}(\Omega, v, t, p) r(\Omega) F(v) d\Omega dv$$

- E=energy received during measurement
- R=energy from the sky
- F= filter function

Do not confuse Surface Brightness with Flux

Flux is total energy incident on some area dA from a source (resolved or not). Flux is not conserved and falls of as R⁻².

$$f_{v} = \iint I_{v} d\Omega$$

$$dE = f_{v} dA dv dt$$

$$dE = f_{v} (4\pi R^{2}) dv dt = L_{v} dv dt$$

$$\therefore f_{v} = \frac{L_{v}}{(4\pi R^{2})}$$

Flux: apparent magnitude

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2} \right)$$

$$m = -2.5\log_{10}\left(\frac{f_1}{f_0}\right)$$

- m1 and m2 are the observed magnitudes of two objects (stars...etc) of the measured surface brightness in magnitudes per arcsecond.
- I find magnitudes confusing and generally convert to flux units for throughput calculations etc....

Flux: absolute magnitude

$$m_{\lambda} - M_{\lambda} = 5\log_{10} d - 5 + A(\lambda)$$

$$\because \frac{f_1}{f_2} = \left(\frac{d_2}{d_1}\right)^2$$

- M is the absolute magnitude. It is the apparent magnitude that would be observed at 10 pc.
- A is the total extinction due to interstellar dust in magnitudes

Surface brightness in magnitudes/ arcsecond^2

$$S = m_{\lambda} + 2.5 \log_{10} A$$

• m is the apparent magnitude of object subtending A square arc seconds

Ex Surface brightness of the moon

M=-12.6 (V-band apparent magnitude Diameter=30 arcminutes

$$m = -2.5 \log_{10} \left(\frac{f_1}{f_0} \right)$$

$$f_1 = f_0 \cdot 10^{-m/2.5} = 3.63 \cdot 10^{-23} \cdot 10^{12.6/2.5}$$

$$= 3.96 \cdot 10^{-18} w / m^2 / Hz$$

$$A = \pi (15 \cdot 60)^2 \sec^2$$

$$= 2.54 \cdot 10^6 \sec^2$$

$$I_v = \frac{(3.96 \cdot 10^{-18})}{2.54 \cdot 10^6} = 1.55 \cdot 10^{-24} W / M^2 / Hz / sec^2$$

Standard choices for reference flux

- Vega system: apparent Magnitude of Vega = 0 in all bands.
- Convenient, but non-physical
- A-B magnitude system:
- $F_0 = 3.63e10^{-23} \text{ W m}^{-2} \text{ Hz}^{-1}$, flat spectrum
- Agrees with Vega at 548nm (center of V-band)

Interesting magnitudes (V-band)

- Sun: m=-26.7
- Full moon: m=-12.6
- Sirius: m=-1.5
- Naked eye limit: m=6
- Brightest stars in Andromeda: m=19
- Present day limit: m²⁹
- Night sky: m=21.5 (best sites, dark time)
- Night sky: m=18 (bright time)

Total E/t= Luminosity, L

$$dE = L(t)dt$$

$$dE = L_{v}(t)dv dt$$

$$dE = L_{\lambda}(t)d\lambda dt$$

Ln = specific luminosity

What does this have to do with spectrograph design?

- Surface brightness of object conserved.
- A Ω is conserved through optical system!
- Must consider both A and $\Omega!$
- In general Ω set by slit and A set by telescope
- Absorption reduces SB, emission increases noise.
- Need to use surface brightness analysis in calculating background (especially in the IR!)
- Fibers, diffraction, non-linear effects all decrease SB.

Spectrograph Speed

Speed=# of counts/s/Angstrom

Slit-limited

II. Intermediate

III. Image-limited

Bowen, I.S., "Spectrographs," in Astronomical Techniques, ed. by W.A. Hiltner, (U. of Chicago Press, 1962), pp. 34-62.

Spectrograph Speed

Schroeder 12.2e, Ira Bowen (1962)

Slit-limited

$$Speed \propto D_{Tel}^0 \cdot W_{grating}^2$$

II. Intermediate

$$Speed \propto D_{Tel}^1 \cdot W_{grating}^1$$

III. Image-limited

$$Speed \propto D_{Tel}^2 \cdot W_{grating}^0$$

Speed=# of counts/s/Angstrom, W= illuminated grating length

Energy Collected

$$E = IA\Omega$$

Energy Collected $E = IA\Omega$

Some questions:

- What are the parts of a spectrograph
- Why are spectrographs so big?
- What sets the sensitivity?
- How do I estimate the exposure time?

S/N for object measured in aperture with radius r: n_{pix} =# of pixels in the aperture= πr^2

Noise from the dark current in aperture R_*t Noise $R_* \cdot t + R_{\text{sky}} \cdot t \cdot n_{\text{pix}} + \left((RN)^2 + \left(\frac{\text{gain}}{2} \right)^2 \right) \cdot n_{\text{pix}} + \text{Dark} \cdot t \cdot n_{\text{pix}}$ Readnoise in aperture

Noise from sky e- in aperture

All the noise terms added in quadrature *Note*: always calculate in *e*-

How do I calculate the number of photo electrons/s on my detector?

- Resolved source
 - We are measuring surface brightness
 - $E = A\Omega I_{y}$
- For an extended object in the IR that is easy: You just need the temperature of the source, the system losses (absorption, QE etc), resolution and etendu of a pixel. No telescope aperture or F/#, no slit size, no optical train!
- For an extended object in the visible: You just need the surface brightness of the source, the system losses (absorption, QE etc), resolution and etendu of a pixel. No telescope aperture or F/#, no slit size, no optical train!
- Point source
 - we are measuring flux
 - $E=Af_vdt$
- For an unresolved object, you need the source magnitude, telescope aperture, system losses and resolution.

Ex 1: Thermal Imaging

R=5000

Pixel size= 10 microns

Final focal ratio at detector = F/3

Source temperature=5000K

Operating near 2 microns

SB from Planck=1,157,314 watts/(m² sr micron) $\Delta\lambda$ =2 microns/5000=0.0004

Solid Angle =
$$\frac{\pi/4}{(F/\#)^2}$$

$$E = I_{\lambda} A\Omega \ QE \ \Delta \lambda = (1157314)(10 \cdot 10^{-6})^{2} (\pi/4)(1/3)^{2} (0.0004)$$
$$= 4.039 \cdot 10^{-9} \ watts$$

$$Nphots = E/hv$$

$$= \frac{(4.039 \cdot 10^{-9}) \cdot (2 \cdot 10^{-6})}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}} = 4.06 \cdot 10^{10}$$

Ex 2: Extended Object in the Visible

R=5000

Pixel size= 10 microns

Final focal ratio at detector = F/3

Moon (SB=1.81E-16 W/(m2 Sr Hz)

Operating near 1/2 micron

 $\Delta\lambda$ =0.5 microns/5000=1 Angstrom

 $dv = (c/\lambda^2)d\lambda = 1.2E11 Hz$

QE = 1

Solid Angle =
$$\frac{\pi/4}{(F/\#)^2}$$

 $E = I_v A\Omega QE \Delta v = (1.81 \cdot 10^{-16})(10 \cdot 10^{-6})^2(\pi/4)(1/3)^2(12 \cdot 10^{-11})$
= $4.7 \cdot 10^{-17}$ watts

$$Nphots = E/hv$$

$$= \frac{(4.7 \cdot 10^{-17}) \cdot (0.5 \cdot 10^{-6})}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8} = 118$$

Ex 2B: Unresolved Object in the Visible

R=5000

Pixel size= 10 microns
Final focal ratio at detector = F/3
Apparent brightness = Vmagnitude= 10
Operating near 1/2 micron $\Delta\lambda$ =0.5 microns/5000=1 Angstrom $d\upsilon$ =(c/ λ ²)d λ =1.2E11 Hz
QE = 1

$$E = f_v A_{Tel} QE \Delta v \Delta t =$$

$$m = -2.5\log_{10}\left(\frac{f_v}{f_0}\right)$$

$$Nphots = E / hv$$

Ex 3: Surface brightness of the moon

M=-12.6 (V-band apparent magnitude Diameter=30 arcminutes

$$\begin{split} m &= -2.5 \log_{10} \left(\frac{f_1}{f_0} \right) \\ f_1 &= f_0 \cdot 10^{-m/2.5} = 3.63 \cdot 10^{-23} \cdot 10^{12.6/2.5} \\ &= 3.96 \cdot 10^{-18} \, w \, / m^2 \, / Hz \\ A &= \pi (15 \cdot 60)^2 \, \mathrm{sec}^2 \qquad \qquad S = m_\lambda + 2.5 \log_{10} A \\ &= 2.54 \cdot 10^6 \, \mathrm{sec}^2 \end{split}$$
 S=Surface brightness in magnitudes/arcsecond^2

$$I_{v} = \frac{(3.96 \cdot 10^{-18})}{2.54 \cdot 10^{6}} = 1.55 \cdot 10^{-24} W / M^{2} / Hz / sec^{2}$$

Noise Sources:

$$\sqrt{R_* \cdot t}$$
 \Rightarrow shot noise from source $\sqrt{R_{sky} \cdot t \cdot \pi r^2}$ \Rightarrow shot noise from sky in aperture $\sqrt{RN^2 \cdot \pi r^2}$ \Rightarrow readout noise in aperture $\sqrt{[RN^2 + (0.5 \times \text{gain})^2]} \cdot \sqrt{\pi r^2}$ \Rightarrow more general RN $\sqrt{\text{Dark} \cdot t \cdot \pi r^2}$ \Rightarrow shot noise in dark current in aperture

$$R_* = e^-/\text{sec}$$
 from the source

$$R_{sky} = e^{-}/\text{sec/pixel}$$
 from the sky

$$RN$$
 = read noise (as if RN^2 e⁻ had been detected)

Dark =
$$e^{-}/\text{second/pixel}$$

Sources of Background noise

- •Relic Radiation from Big Bang
- •Integrated light from unresolved extended sources
- •Thermal emission from dust
- •Starlight scattered from dust
- •Solar light scattered from dust (ZL)
- •Line emission from galactic Nebulae
- •Line emission from upper atmosphere (Airglow)
- •Thermal from atmosphere
- •Sun/moonlight scattered by atmosphere
- •Manmade light scattered into the beam
- •Thermal or scatter from the telescope/dome/instrument

S/N for object measured in aperture with radius r: n_{pix} =# of pixels in the aperture= πr^2

Noise from the dark current in aperture R_*t Noise $R_* \cdot t + R_{\text{sky}} \cdot t \cdot n_{\text{pix}} + \left((RN)^2 + \left(\frac{\text{gain}}{2} \right)^2 \right) \cdot n_{\text{pix}} + \text{Dark} \cdot t \cdot n_{\text{pix}}$ Readnoise in aperture

Noise from sky e- in aperture

All the noise terms added in quadrature *Note*: always calculate in *e*-

S/N - some limiting cases. Let's assume CCD with Dark=0, well sampled read noise.

$$\frac{R_*t}{\left[R_*\cdot t + R_{\text{sky}}\cdot t\cdot n_{\text{pix}} + \left(RN\right)^2\cdot n_{\text{pix}}\right]^{\frac{1}{2}}}$$

Bright Sources:

(R*t)1/2 dominates noise term

$$S/N \approx \frac{R_* t}{\sqrt{R_* t}} = \sqrt{R_* t} \propto t^{\frac{1}{2}}$$

Read-noise Limited

$$(3\sqrt{R_{sky}t} < RN): S/N \propto \frac{R_*t}{\sqrt{n_{pix}RN^2}} \propto t$$

Sky Limited
$$(\sqrt{R_{sky}t} > 3 \times RN)$$
: $S/N \propto \frac{R_*t}{\sqrt{n_{pix}R_{sky}t}} \propto \sqrt{t}$

Note: seeing comes in with n_{pix} term

End lecture 2