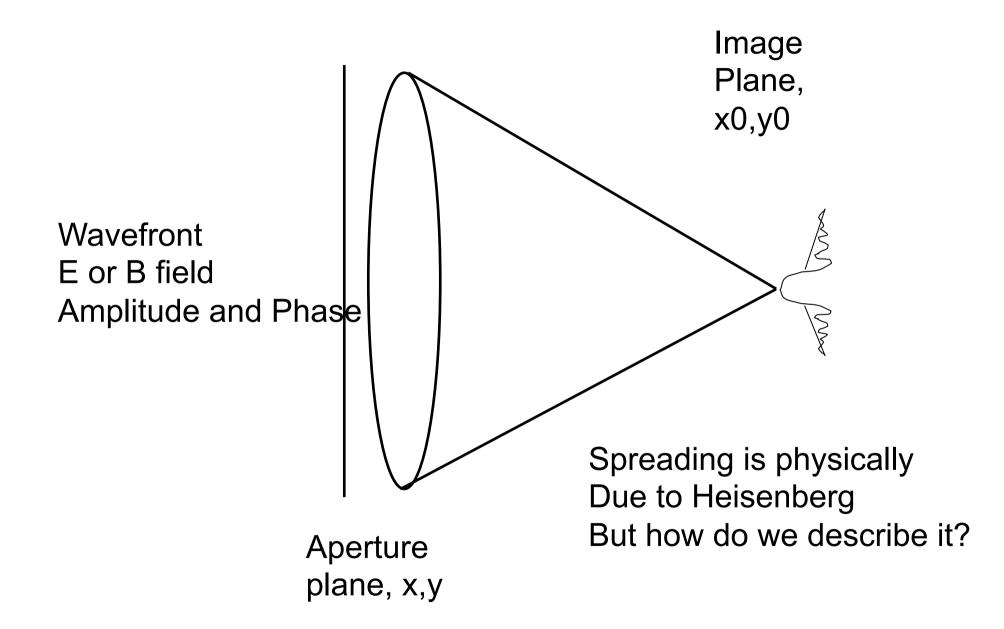
Physics 1901

Experimental Astronomy – Graduate Course Autumn (Apr-May 2014)

Assoc. Prof. Andrew I. Sheinis , Prof. Joss Bland-Hawthorn Australian Astronomical Observatory Sydney Institute for Astronomy

Intro to Fourier Optics

O'neill chapter 2 and 5 Goodman chapter 4,5,6



Fresnel (near-field) Diffraction

Only called near field because you are in front of infinity

$$A(x_0, y_0) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp\left[\frac{\pi i}{\lambda D}(x^2 + y^2)\right] \exp\left[\frac{-2\pi i}{\lambda D}(x_0 x + y_0 y)\right] dx dy$$

Hard, needs to be solved numerically except for all but simplest cases

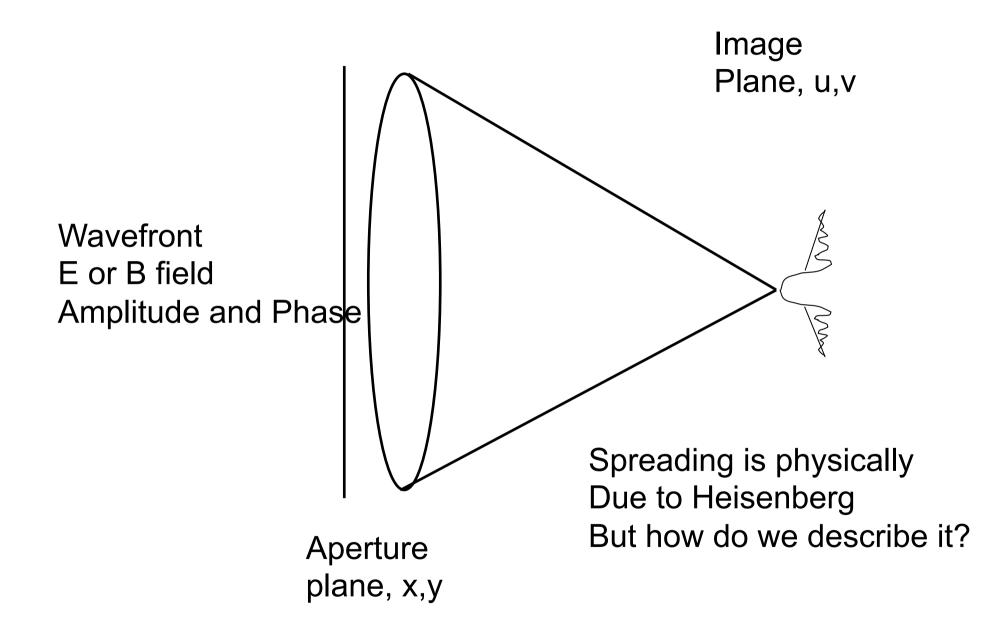
$$D >> \frac{(x^2 + y^2)_{\max}}{\lambda}$$

Fraunhofer (far-field) diffraction

$$A(u,v) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp[-2\pi i(ux+vy)] dx dy = \Im\{f(x,y)\}$$

 $u = x_0/\lambda D$, $m = y_0/\lambda D$,

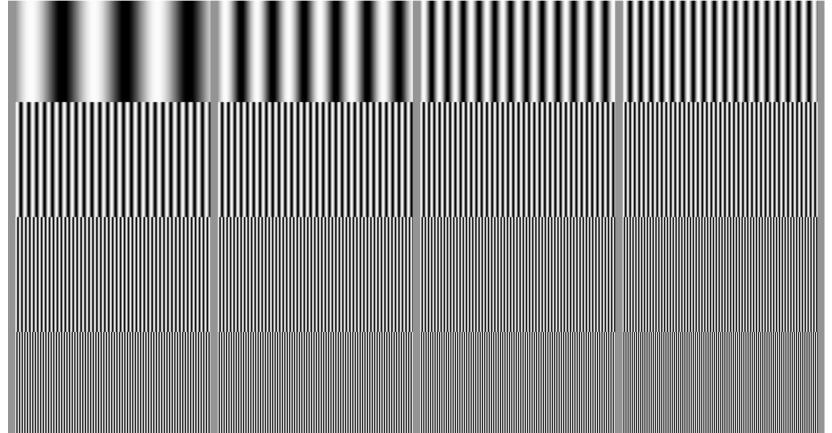
Case is simplified for D= infinity, or The back focal plane of a lens! In these cases the E or B field is described by a Fourier Transform



Fourier Transform (FT)

$$1D: F(u) = \Im\{f(x)\} = \int_{-\infty}^{\infty} f(x)e^{-2\pi i u x} dx$$
$$2D: F(u,v) = \Im\{f(x,y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-2\pi i (ux+vy)} dx dy$$

U=1/x Spatial Frequency



Inverse Transform

$$1D: f(x) = \mathfrak{I}^{-1}\{F(u)\} = \int_{-\infty}^{\infty} F(u)e^{2\pi i u x} du$$
$$2D: f(x,y) = \mathfrak{I}^{-1}\{F(u,v)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{2\pi i (ux+vy)} du dv$$

Fourier Transform Relations

• Fourier(fourier)

 $\Im\{\Im\{f(x)\}=f(-x)$

- Similarity Theorem $\Im\{f(ax)\} = \frac{1}{|a|}F\left(\frac{u}{a}\right)$
- Addition Theorem $\Im\{f(x) + g(x)\} = F(u) + G(u)$
- Shift Theorem

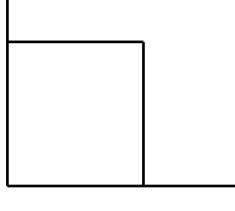
$$\Im\{f(x-a)\} = e^{-i2\pi as}F(u)$$

Fourier Transform Relations

- Fourier Convolution Theorem $\Im\{\int_{-\infty}^{\infty} f(x')g(x-x')dx'\} = \Im\{f(x)\}\Im\{g(x)\}$
- Wiener-Khintchine Theorem $\Im\{|F(u)|^2\} = \int_{-\infty}^{\infty} f(x')f^*(x-x')dx'$

Useful Transforms Tophat

$$f(x) = \Pi(x) = \begin{cases} h....-b/2 < x < b/2 \\ 0....otherwise \end{cases}$$



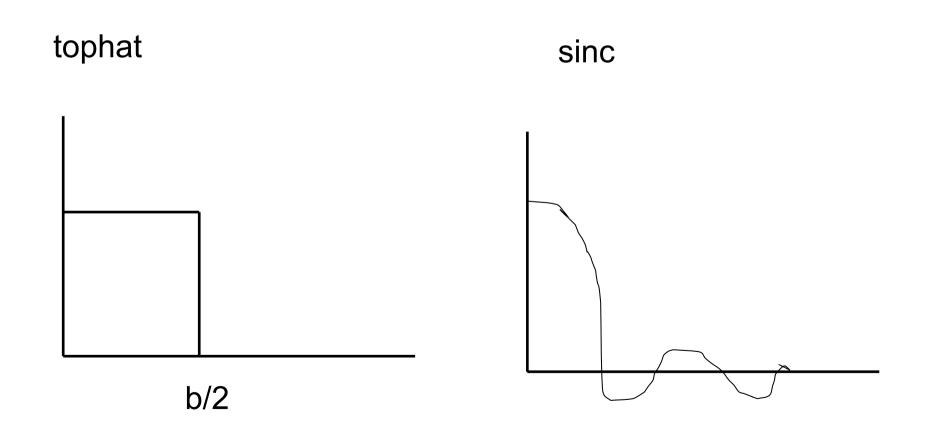
-b/2 < x < b/2

otherwise

b/2

$$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$$
$$\Im\{\Pi(x)\} = hb \sin(\pi ub) / (\pi ub)$$
$$= hb \sin c(ub)$$

Useful Transforms Tophat



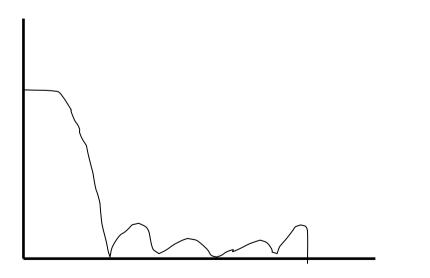
Useful Transforms sinc

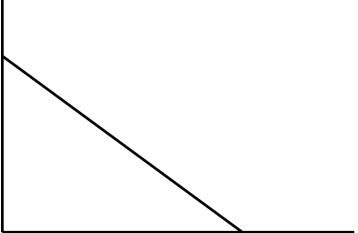
 $\Im(\sin c(x)) = \Pi(u)$

$$\Im(\sin c^2(x)) = \Lambda(u)$$
$$\Lambda(x) = \begin{cases} 1 - |x| \dots |x| < 1\\ 0 \dots |x| > 1 \end{cases}$$

Useful Transforms Tophat

Lambda





Useful Transforms Gaussian

$$f(x) = h \exp(-x^2 / \sigma^2)$$

$$\Im\{f(x)\} = h\sigma\sqrt{\pi}\exp(-\pi^2 u^2\sigma^2)$$

You can't deGauss a Gauss!

examples

Rectangular slit width a:

$$A(x_0) \propto \operatorname{sinc}(x_0 a / \lambda D) = \frac{\sin(\pi x_0 a / \lambda D)}{\pi x_0 a / \lambda D}$$

D=diameter

Circular aperture diameter :

$$A(\rho_0) \propto \frac{J(\pi \rho_0 \Delta / \lambda D)}{\pi \rho_0 \Delta / \lambda D}$$

J=Bessel function

$$[I(\rho_0) = |A(\rho_0)|^2 = Airy \ Profile]$$

Optical Transfer function

$$OTF(u, v) = \Im\{PSF\}$$

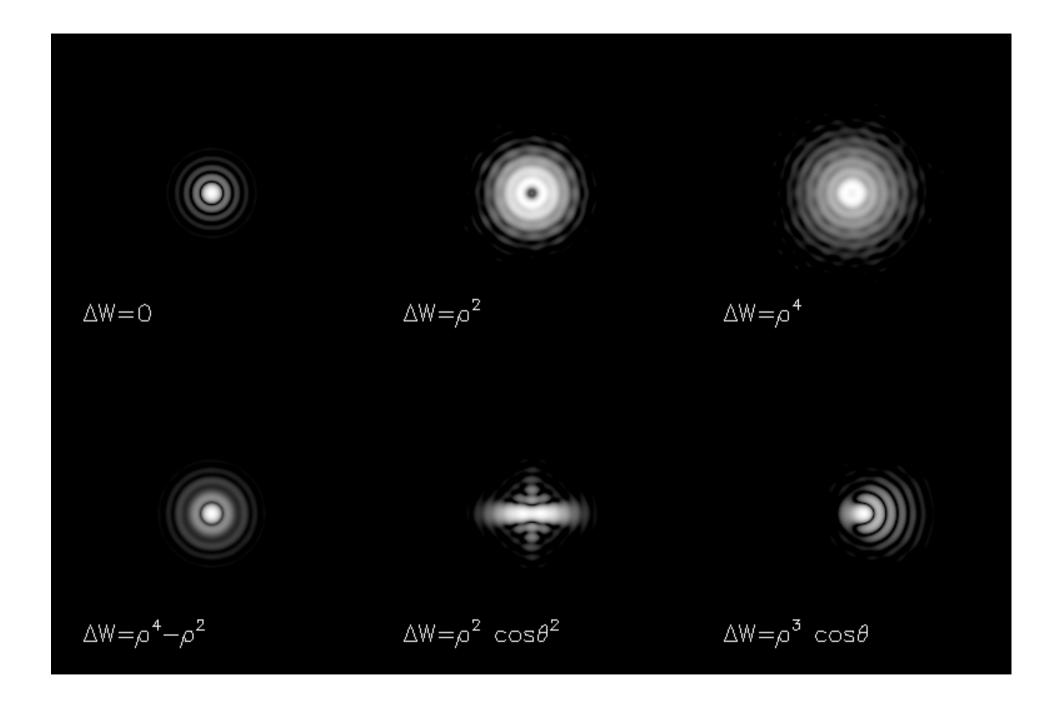
= $\Im\{\left|\Im\{f(x, y)\}\right|^2\}$
= $\int_{-\infty}^{\infty} f(x', y')f^*(x'+x, y'+y)dx'dy$

1

Frequency response function Tells us how well a lens can pass information as a function of increasing spatial frequency

properties

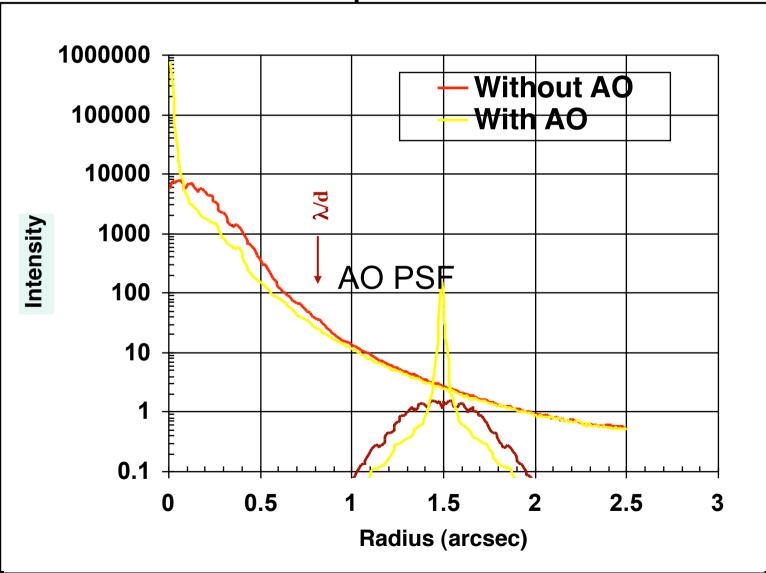
Property	Function	Fourier Transform
	f(t)	$\hat{f}(\omega)$
Inverse	$\hat{f}(t)$	$2\pi f(-\omega)$
Convolution	$f_1 \star f_2(t)$	$\hat{f}_1(\omega) \hat{f}_2(\omega)$
Multiplication	$f_1(t) f_2(t)$	$\frac{1}{2\pi}\hat{f}_1\star\hat{f}_2(\omega)$
Translation	$f(t-t_0)$	$e^{-it_0\omega} \hat{f}(\omega)$
Modulation	$\mathrm{e}^{\mathrm{i}\omega_0 t} f(t)$	$\hat{f}(\omega - \omega_0)$
Scaling	$f(\frac{t}{s})$	$ \mathbf{s} \hat{f}(\mathbf{s} \omega)$
Time derivatives	$f^{(p)}(t)$	$(i\omega)^p \hat{f}(\omega)$
Frequency derivatives	$(-it)^p f(t)$	$\hat{f}^{(p)}(\omega)$
Complex conjugate	$f^{*}(t)$	$\hat{f}^{+}(-\omega)$
Hermitian symmetry	$f(t)\in \mathbb{R}$	$\hat{f}(-\omega) = \hat{f}^{*}(\omega)$

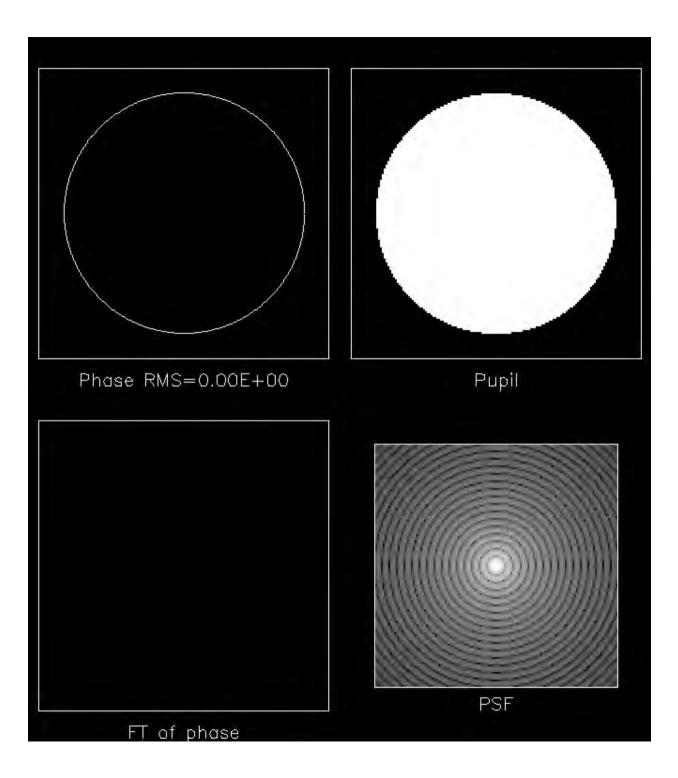


Example: Coronography

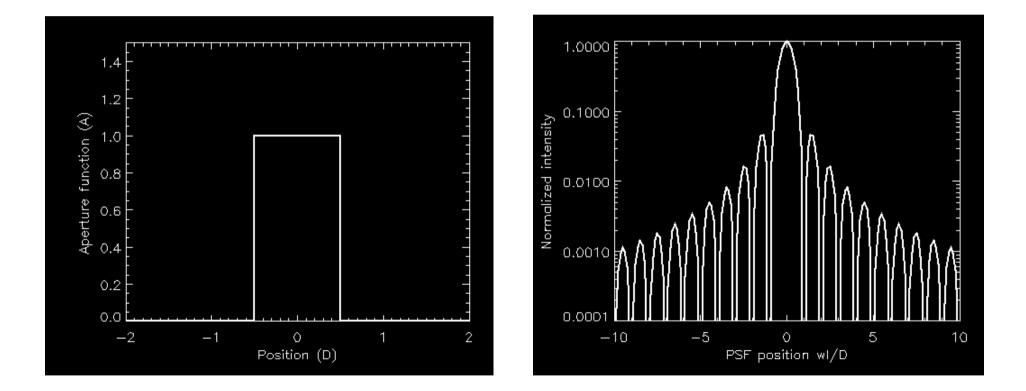
- 10e-6 to 10e-9 surface brightness ratio
- Scattered light generally far brighter than corona
- What to do?

Even worse when we try to image extrasolar planets

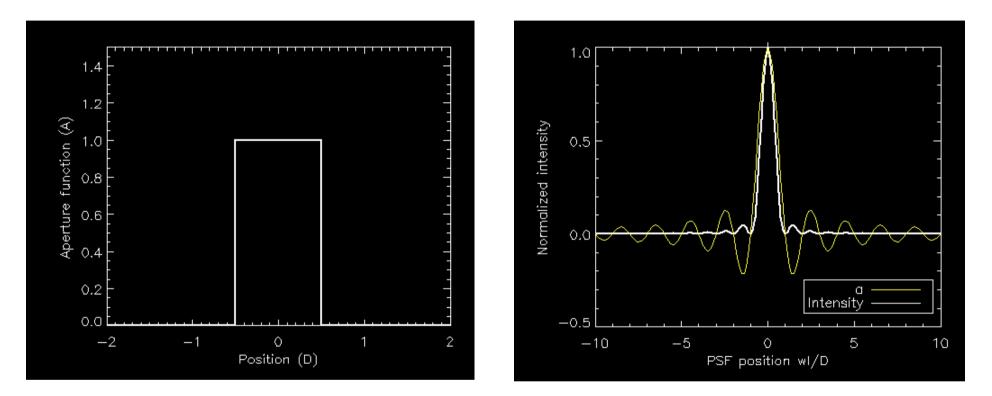


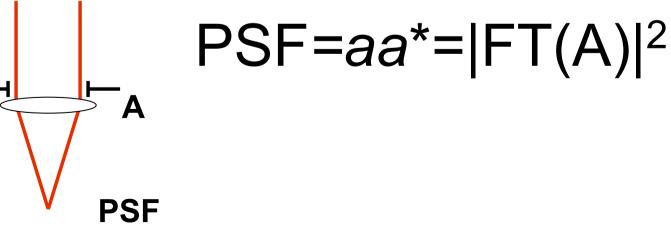


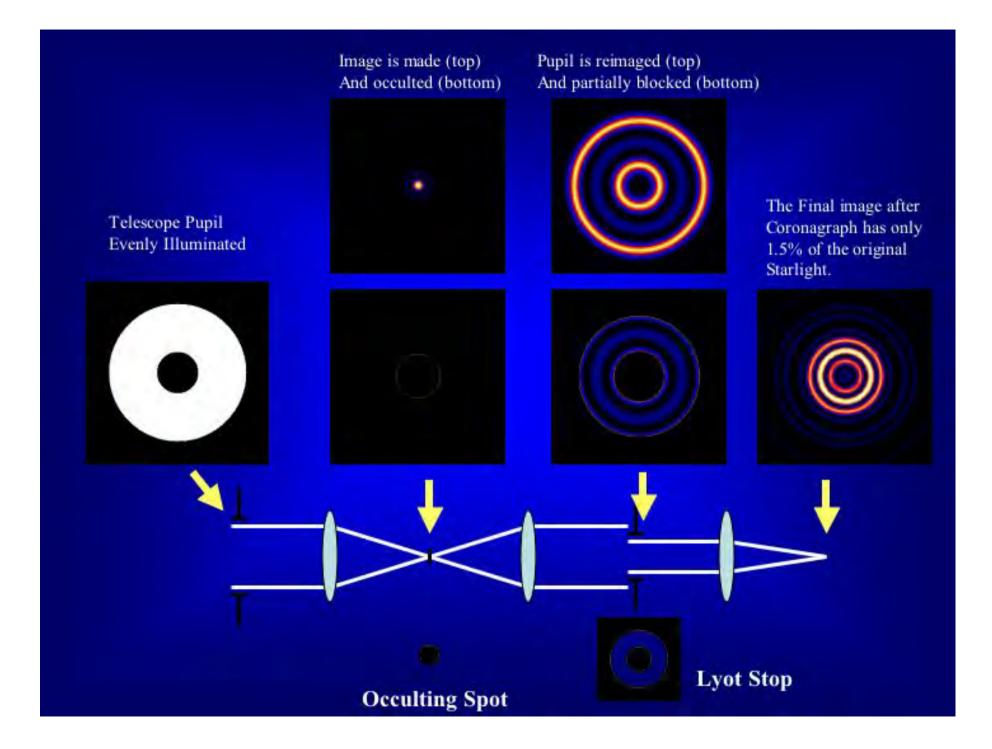
*aa**=|FT(A)|² is the diffraction term

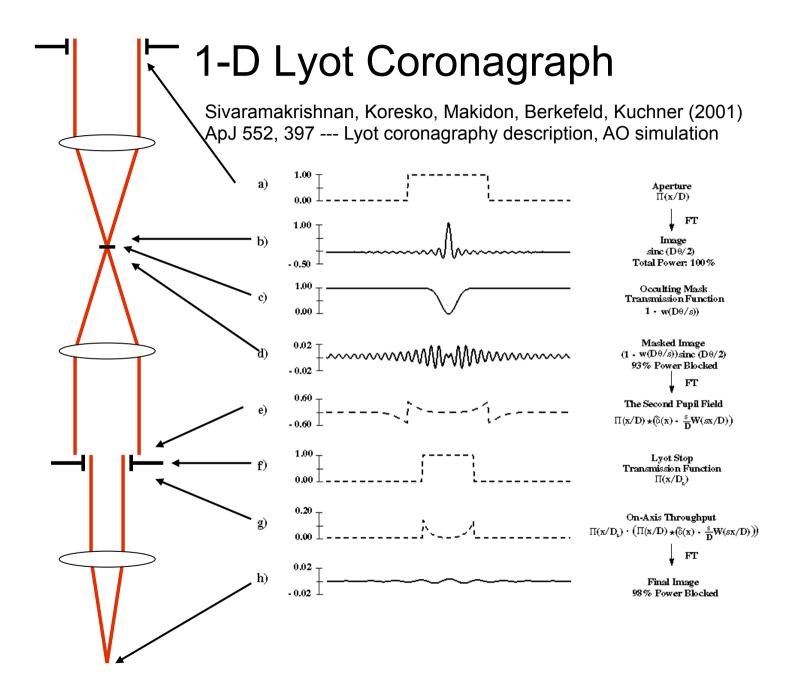


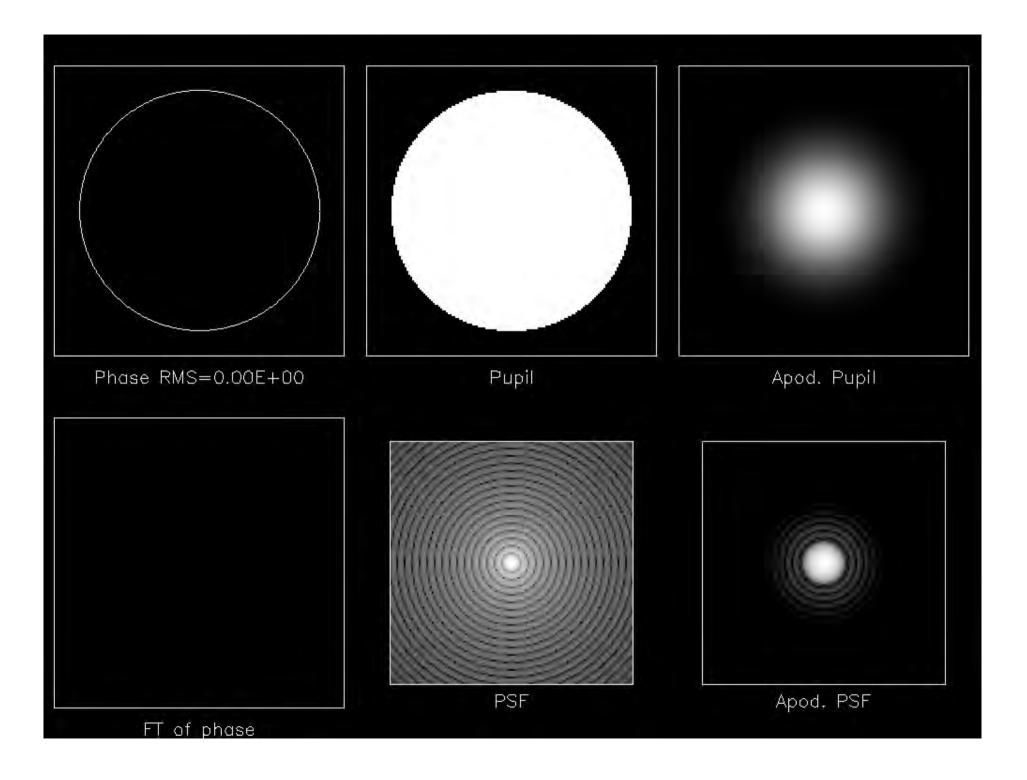
How can we control diffraction?

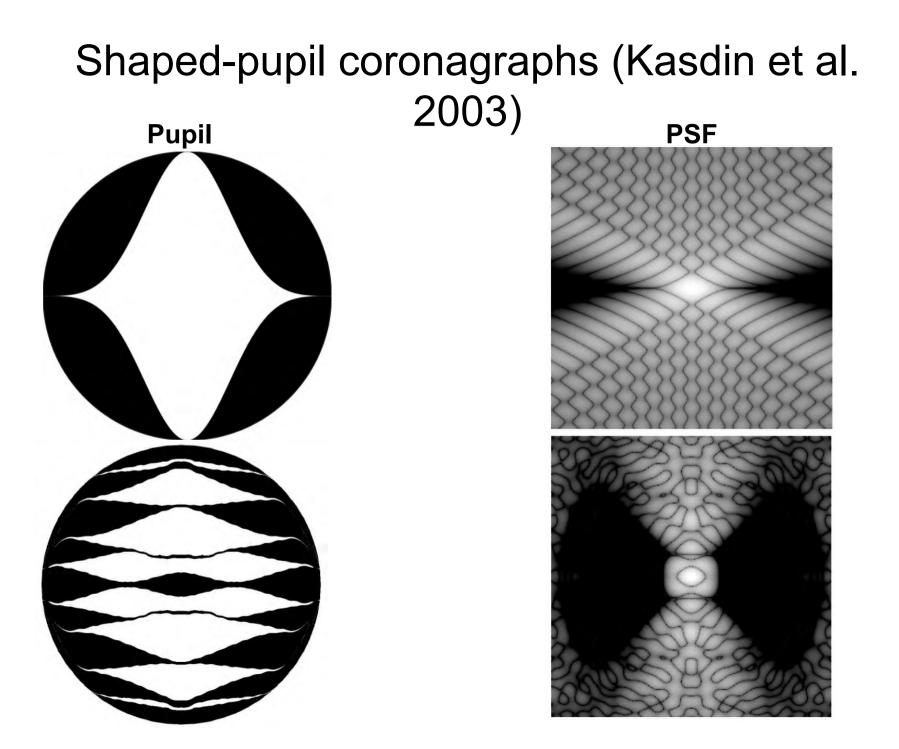












High-contrast AO PSF

- We can use a Taylor expansion of the electric field to determine the PSF in the regime where phase errors are small
- (x,y) = pupil plane coordinates
- (η,ξ) = focal plane coordinates
 - Spatial frequency 1/d <=> angular scale λ/d
- Upper case / lower case = fourier transform pairs
 - Upper case for pupil plane
- E,e = electric field
- P,p = PSF (intensity)
- A = aperture
- $\Phi = phase$
- a,ϕ = fourier transforms of above ____

$$E(x, y) = A(x, y)e^{i\Phi(x, y)}$$

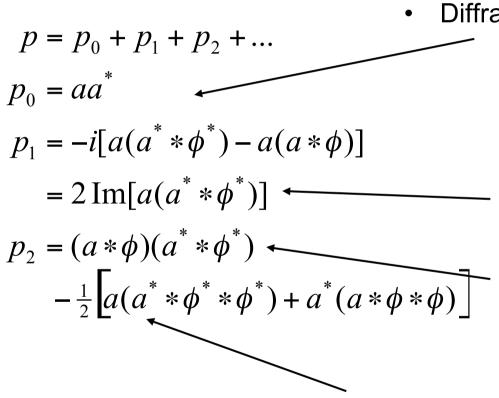
$$= A(1+i\Phi - \frac{\Phi^2}{2} + \dots)$$

Second-order PSF expansion (Sivaramakrisnan et al.
2002)

$$e(\xi,\eta) = FT(A(x,y)e^{i\Phi(x,y)})$$

 $= FT(A + iA\Phi - \frac{A\Phi^2}{2} + ...)$
 $= a + i(a^*\phi) - \frac{a^*\phi^*\phi}{2} + ...)$
 $p(\xi,\eta) = |e(\xi,\eta)|^2$
 $= (a + i(a^*\phi) - \frac{a^*\phi^*\phi}{2} + ...)(a^* - i(a^**\phi^*) - \frac{a^**\phi^**\phi^*}{2} + ...)$
 $= aa^*$
 $-i[a(a^**\phi^*) - a^*(a^*\phi)]$
 $+ (a^*\phi)(a^**\phi^*)$
 $-\frac{1}{2}[a(a^**\phi^**\phi^*) + a^*(a^*\phi^*\phi)]$
 $+ ...$

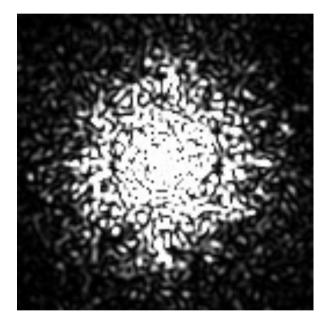
PSF terms

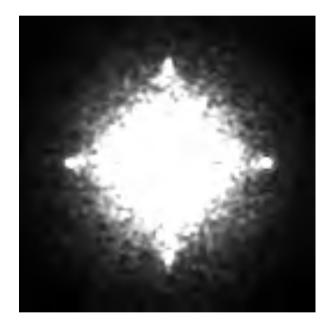


- Strehl term
 - Removes power from PSF core

- Diffraction pattern term
 - Pinned speckle term
 - Antisymmetric
 - Traces the diffraction pattern; vanishes when diffraction is negligible
 - Halo term
 - $\sim = |f|^2$
 - Symmetric

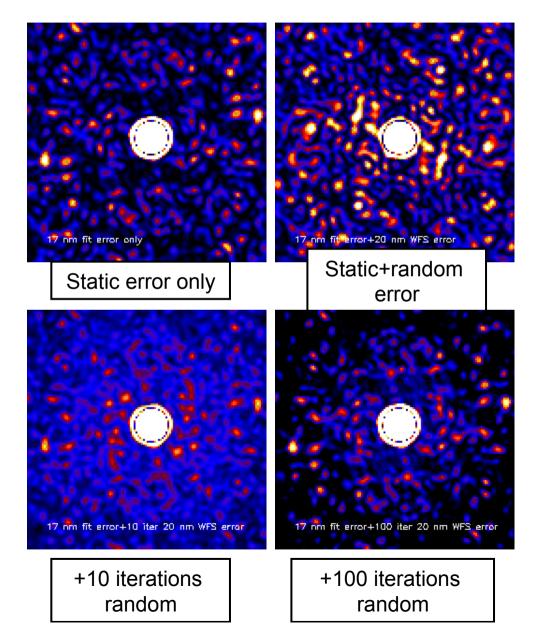
Residual PSF speckles limit high-contrast imaging but for atmospheric sources smooth out with time





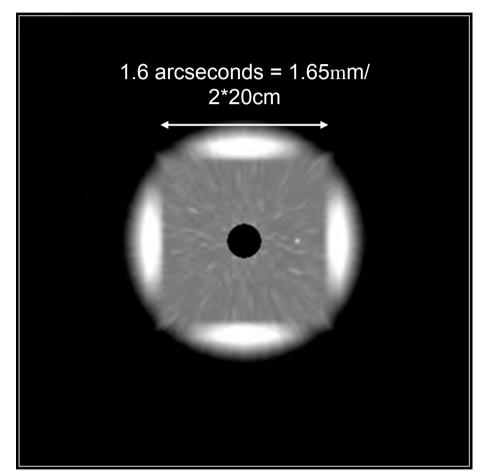
Static errors limit high-contrast sensitivity of current AO

- Multiple speckle sources do not add but instead produce new speckle pattern
- In a long-exposure image with some static errors, PSF returns to original static pattern
- Static error sources dominate sensitivity for all current AO systems



eXtreme Adaptive Optics Planet Imager: XAOPI

- A ~4096 actuator AO system for an 8-10m telescope
- Science goals:
 - direct detection of extrasolar planets through near-IR emission at contrast of 10⁷-10⁸
 - characterization of circumstellar dust
- Status: 2003-4 Conceptual design study
 - System could be deployed in 2007-8
- System is intended to be facilityclass
 - A wide variety of high-contrast science programs are available
 - System will operate on targets brighter than m_R~7-10



Sources and properties of wavefront error

- AO system with actuator spacing *d* can correct spatial frequencies up to 1/2*d* (Nyquist)
- Hence can correct PSF terms out to "control radius" $\lambda/2d$
- Classic atmospheric fitting error (high frequency)
 - Primarily scatters light to large radii
- Uncorrected telescope aberrations (also high frequency)
- Aliasing of high-frequency errors to low frequency
 - A major source of scattered light inside control radius
 - Spatially Filtered WFS (Macintosh et al. 2003, Poyneer and Macintosh submitted) corrects this
- Temporal (bandwidth) errors
 - Scatters light close to star, pushes ExAO to fast systems
- AO system measurement noise
 - Other major source of scatted light inside control radius; pushes ExAO to bright stars
- Internal calibration errors