
PHYS 2013/2913/2923 Tutorial 3

First, a nice question on the last Assignment. Congrats! So the Big Bang fills the
tiny Universe with some kind of radiation and it expands at a slow rate for a split second.
Then inflation happens - this is an emergent property from the vacuum (it cannot have
zero energy due to Heisenberg’s Uncertainty Principle) where the Universe takes off at a
HUGE expansion rate and undergoes a hundred e-folds or so.

But why does inflation end and not keep going?? Great question.

Did you notice an omission in my inflation story so far? Few people noticed this af-
ter Alan Guth, but Andrei Linde did. The HUGE inflated Universe must have been
EXTREMELY cold. Any particles before inflation (like weird monopoles) must have
become extremely rare.

So how do we end up with a Universe today filled with matter and energy? Another
emergent property of the vacuum was reheating. The quantum vacuum fluctuations

that kept appearing on Planck scales (`P =
√
h̄G/c3 = 1.62 × 10−35 m) every time the

Universe got stretched gave rise to zillions of particles. This process killed off inflation
(Universe now filling up with matter and energy) and took us back to the former energy
state where we continue to expand at the slow former rate, the original Hot Big Bang.
(This is an advanced topic about scalar fields that we discuss in PHYS4122.)
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TOPOLOGY, CURVATURE, TIME & SPACE

Here we look at some issues that students struggle with. All students (and sci-
entists) struggle with the strange world of curvature and topology in general.
Thus, the impact on things like cosmological distances, time passed, redshift,
luminosity, etc. all become a little tricky but you can certainly understand
the basic ideas easily enough.

Let me give one example. You can manufacture a path that goes forever
without end.

So why would you think of asking what is the Universe expanding into? What appears
infinite in a few dimensions can be finite in higher dimensions, especially in a κ > 0
Universe. (We normally speak of κ = 0 and κ < 0 space as being infinite.) There are
still people who think the world is flat because they can’t see how people can be standing
upright on a sphere. They don’t buy that the local perception of gravity defines your up
and down.

So don’t worry about the overall shape of the Universe - it’s huge and beyond our horizon
for now. (There are far more complex topologies - look up Calabi-Yau or Kaluza-Klein,
both crazy but with beautiful properties.)
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Curvature on the very largest scales is a real thing that modern day astronomers and
cosmologists are probing easily. It affects distances, galaxy properties and galaxy counts.

Galaxy counts increase with distance in a given solid angle:
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Consider a triangle on different curved surfaces:

Here are the angle formulae:

α + β + γ = π + A/R2 (κ > 0) (1)

α + β + γ = π (κ = 0) (2)

α + β + γ = π − A/R2 (κ < 0) (3)

where A is the area of the triangle and R is the radius of curvature. (A/R2 is a solid angle
since the total surface gives you 4π. This is why there is a dΩ term in the Robertson-
Walter metric, i.e. you are correcting angles and distances for curvature.)
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If the angles add up to π, does that mean we live in a flat Universe?

This extraordinary object has κ > 0 on outer side, κ < 0 on inner surface, so angles can
be close to π.
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What about perceived angles with distance?

And this affects our interpretation of the blobs in the CMB:

Can you now see how that affects perceived luminosity with distance? (flux through a
solid angle)
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What about perceived angles with distance?

On a 2D flat plane, going from (x, y) to (x + dx, y + dy), we can write the line segment
is d`2 = dx2 + dy2. But we normally work in polar or spherical coordinates. Going from
(r, θ) to (r + dr, θ + dθ), the line segment is d`2 = dr2 + r2dθ2. This is for κ = 0.

In a 2D curved space (R is radius of curvature), the line segments are:

d`2 = dr2 +R2 sin2(r/R)dθ2 (κ > 0) (4)

d`2 = dr2 +R2 sinh2(r/R)dθ2 (κ < 0) (5)

For r � R, all formulae are identical of course.

In 3D flat space, going from (x, y, z) to (x + dx, y + dy, z + dz), we can write the line
segment is d`2 = dx2 + dy2 + dz2. Going from (r, θ, φ) to (r + dr, θ + dθ, φ+ dφ), the line
segment is d`2 = dr2 + r2(dθ2 + sin2 θ dφ2). This is for κ = 0.

In 3D curved space, the line segments are:

d`2 = dr2 +R2 sin2(r/R)(dθ2 + sin2 θ dφ2) (κ > 0) (6)

d`2 = dr2 +R2 sinh2(r/R)(dθ2 + sin2 θ dφ2) (κ < 0) (7)

For r � R, all formulae are identical of course.
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What about perceived angles with distance? This gets us to the angular diameter
distance.

So we need formulae for the 2d space (the best way to think about all this stuff):

d`2 = dr2 +R2 sin2(r/R)dθ2 (κ > 0) (8)

d`2 = dr2 + r2dθ2 (κ = 0) (9)

d`2 = dr2 +R2 sinh2(r/R)dθ2 (κ < 0) (10)

For r � R, all formulae are identical of course. If we simply want to consider angle, i.e.
(r, θ) to (r, θ + dθ),

d` = R sin(r/R)dθ (κ > 0) (11)

d` = r dθ (κ = 0) (12)

d` = R sinh(r/R)dθ (κ < 0) (13)

We must now include Universal expansion because this is a separate effect from the effects
of distance. If the Universe is static, d` ∝ r dθ; if not, we must include the scale factor a.
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And now for the angular diameter distance, dA:

We can reduce all three formulae to:

` = a(te) Sκ(r) δθ (14)

=
Sκ(r) δθ

1 + z
(15)

for a standard yardstick `, so that we write

dA ≡
`

δθ
=
Sκ(r)

1 + z
(16)

This next step is subtle, but important. Cosmic time is proper time. In a flat Universe,
the angular-diameter distance is not equal to proper distance today to the source, but
proper distance at the time the light was emitted.

dA ≡ dP (te) =
dP (t0)

1 + z
(17)

This is obvious enough - imagine that two fireflies flashed at you when they were 1 degree
apart as seen against the night sky. That angle is preserved for all time since the message
was sent, even though the fireflies are flying away from you after that and seem to be
converging.

So when the entire Universe was small, the CMB flashed the surface of last scattering at
us; it really was a narrow interval in cosmic time. Today, that scattering surface is 1000×
further away, but the angular scale is preserved for all time.

Revisit how we interpret the cosmic microwave background.
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Estimating the power spectrum of the CMB

The LHS image is boosted to show you structure on one angular scale. You basically mul-
tiply by the weights on RHS to find the power spectrum using web tools freely available.
Power at 18◦ is much less than the power at, say, 1◦.

The peaks relate to cosmological parameters - see next slide.
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So this is where Alan Guth’s cosmic inflation (1981) came to the rescue. The

Universe was once tiny, in full causal contact, then went through a phase
transition when the forces emerged, inflating enormously in a tiny fraction of
a second (recall your 2nd Assignment).
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Why inflation?
Guth’s proposal for cosmic inflation solved a number of fundamental problems in one

go: magnetic monopole problem, horizon problem, flatness problem, etc.

I will address one of these here, the horizon problem. When we look at the CMB,
how far was the observable horizon at z = 1100 (Hubble distance)? Recombination was
during the matter-dominated era, such that

(
H(z)

H0

)2 = ΩM,0(1 + z)3 (18)

where H0 and ΩM,0 are defined today, so

c

H(zCMB)
=

3× 108 m s−1

1.24× 10−18 s−1(1101)3/2
= 0.2 Mpc (19)

To get the angle on the sky, we divide by the angular diameter distance, dA, such
that

θH =
c/H(zCMB)

dA
≈ 0.2 Mpc

13 Mpc
≈ 1◦ (20)

That’s about the size of one of the blobs in the CMB (RHS). Today, that maps to
something bigger than the Virgo cluster, say.

So why is there such incredible uniformity across the entire Universe at
z = 1100 given that none of it has been able to communicate? The Universe
was once tiny, in full causal contact, then inflated hugely onto a scale that could never
be in causal contact (faster than light).
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So the angular diameter distance to the surface of last scattering today is about 13 Mpc.

The proper distance is more like 13,000 Mpc, i.e. almost the size of the observable
Universe.
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Luminosity distance is, in principle, easier to understand. This time we use a standard
candle (like a 100W lightbulb or a Type Ia supernova) and write the simple relation:

dL ≡
(
L

4πf

)1/2

(21)

Remember what happens to solid angles:

So there’s a 1/(1 + z) correction for the loss of energy due to z, a 1/(1 + z) correction for
time being stretched (energy per unit time) by z, thus

f =
L

4πSκ(r)2(1 + z)2
(22)

where the correction for curvature is now included as well. So thus

dL = Sκ(r)(1 + z) (23)

= r(1 + z) (κ = 0, our Universe) (24)

= dP (t0)(1 + z) (25)

Note: if you estimate the distance to a standard candle using the inverse
square law, you will overestimate the proper distance by a factor (1 + z).

Useful connections (κ = 0):

dA(1 + z) = dP (te)(1 + z) = dP (t0) =
dL

1 + z
(26)

20



Overview & revision

The Universe is a remarkable study that begins with physics we don’t understand (trans-
Planckian), moving through QFT (inflation), GR, particle physics, leptogenesis, baryoge-
nesis, and astrophysics once matter takes over.

Remember that the Hubble parameter H = ȧ
a

so this has a different dependence in each
era, declining overall like everything else, e.g. energy/matter (non-Λ) density declining like
a−3, temperature, pressure, etc. Note that during the Λ eras, H is a constant. Expanding
universes have changing a but not necessarily H.
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