
PHYS 2013/2913/2923 Tutorial 2

Here we look at how astronomers estimate. We don’t care how big the question, how
approximate the answers, if it gives us a better understanding. Order of magnitude
approximations can be made for anything, and it’s how astronomers start any calculation.

1. I find the online calculator at the link below really useful; it works with SI or cgs units
and has fundamental constants for astronomy in both units.

In class, using the calculator, I would like you to work out what is 1/H0,
where Hubble’s parameter H0 = 70 km s−1 Mpc−1. What are the units? What
is the significance of this quantity?
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2. According to a geophysicist colleague at the University of Hawaii, there are 1020 grains
of sand on Earth. How does that compare with the number of stars or planets in the
observable Universe?

Approach: For all calculations that follow, the Universe is considered to be flat (k = 0,
κ = 0, or whatever convention is used for curvature; this simplifies the algebra a lot.)
Compute the total volume of the Universe out to the observable horizon. What’s the
appropriate distance metric? From what we observe today, compute the total number of
baryons and photons, and assume true over the same volume. Now compute the total
number of stars and total number of galaxies.

(If time allows, I will show solutions to the integrals using my free Wolfram Cloud
Mathematica account.)

Reminder: proper distance from integrating over the radial comoving coordinate r,

dP (t) = a(t)
∫ r

0
dr = a(t)r (1)

Remember how we bring in Hubble’s parameter:

ḋP = ȧr =
ȧ

a
dP (2)

We can evaluate today (t = t0):

vP (t0) = H0 dP (t0) (3)

The most distant object you can see is one for which the light emitted at t = 0 is just
now reaching you at t = t0. From (1) and (3), the Hubble distance is one measure of the
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size of the observable Universe (radiation dominated):

dH(t0) = c
∫ t0

0

dt

a(t)
(4)

= 2ct0 (5)

= c/H0 (6)

= 4300 Mpc (7)

where the age of the Universe is t0 = 1/2H0. There are galaxies beyond this horizon
travelling faster than c with respect to us, but no information is being passed.

From (1) and (3), the Hubble distance is one measure of the size of the observable Universe
(matter dominated):

dH(t0) = c
∫ t0

0

dt

a(t)
(8)

= 3ct0 (9)

= 2c/H0 (10)

= 8600 Mpc (11)

where the age of the Universe is t0 = 2/3H0 (Einstein-de Sitter Universe).

If we account for Λ acceleration, where a(t) = eH0(t−t0),

dH(t0) = c
∫ t0

0

dt

a(t)
(12)

= 3.20 c/H0 (13)

= 14000 Mpc (14)

where the age of the Universe is t0 ≈ H−1
0 (de Sitter Universe).

The proper volume inside the horizon,

VH =
4π

3
d3
H (15)

= 137(c/H0)3 (16)

= 1.15× 1013 Mpc3 (17)

The mass density

ρm,0 = Ωm,0 ρc,0 (18)

= 0.3(1.28× 1011 M� Mpc−3) (19)

= 4× 1010 M� Mpc−3 (20)
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Thus the total mass within the horizon is

MH = ρm,0VH (21)

= 4.6× 1023 M� (22)

with 90% in dark matter, 10% in stars and gas. So how do stars and planets compare to
grains of sand?
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3. In the plot, the Universe has interesting transition epochs where t0 is the present.
When did the radiation-dominated Universe give way to the matter-dominated Universe
at t = trm?

Approach: work in terms of scale factor a, cosmic time t, and redshift z. All of these
can be easily related for a given cosmology (Universe). At t = trm, using the Friedmann
equation:

Even though the energy density declines, the total radiation and matter content (number
of particles) is roughly constant over cosmic time.

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
(23)

Before that time, the first term dominated; after that time, the second term dominated.
All “0” subscripts refer to the present. This is a flat Universe dominated by radiation
and matter (emergent dark energy comes later).

Another version of that formula:

H(t)2 =
8πG

3c2
(εr(t) + εm(t)) (24)

Today’s ratio
Ωr,0

Ωm,0

=
εr,0
εm,0

≈ 2.8× 10−4 (25)
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But note that the following is also true:

εr(a)

εm(a)
=

εr,0/a
4

εm,0/a3
(26)

Scale factor a and time t are useful interchangeable variables; just set a = arm in the past
when εr = εm, so that

arm =
εr,0
εm,0

≈ 2.8× 10−4 (27)

Remember always this important formula:

z =
a(t0)

a(te)
− 1 (28)

that works for all cosmologies in this course; te is when the photon was emitted and
a(t0) = 1 by definition. So that:

a =
1

1 + z
(29)

This tells us that

arm =
1

1 + zrm

(30)

and zrm ≈ 3600. So redshifts and scale factors are easy - how about actual cosmic times?
It’s worth seeing this derived at least once to understand how it all follows.

So you’ve seen at various times already that a ∝ t1/2 during the radiation epoch
(a� arm), a ∝ t2/3 during the matter epoch (a� arm). Let’s find a formula for t where
this is true.

Remembering H(t) = ȧ
a
, it’s easy enough to rearrange formula (23) (do that in your own

time) to get:

H0 dt =
a√
Ωr,0

(1 +
a

arm

)−1/2 da (31)

We can integrate this formula by hand or with a symbolic manipulator like Mathematica

to get:

H0 t =
4a2

rm

3
√

Ωr,0

(1− (1− a

2arm

)(1 +
a

arm

)1/2) (32)

In the limit of a� arm,

a(t) ≈ (2
√

Ωr,0H0t)
1/2 (33)

In the limit of a� arm,

a(t) ≈ (
3

2

√
Ωm,0H0t)

2/3 (34)
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And now to answer the question, a = arm so that

trm =
4

3
(1− 1√

2
)
a2

rm√
Ωr,0

H−1
0 ≈ 0.39

Ω
3/2
r,0

Ω2
m,0

H−1
0 (35)

= 3.3× 10−6H−1
0 (36)

= 47, 000 years (37)

4. When did the matter-dominated Universe give way to the Λ-dominated universe at
t = tmΛ?

The solution follows above very closely where we recognize that Ωr,0 can be ignored
because it is so small compared to matter and Λ dominance today. Thus

amΛ = (
Ωm,0

ΩΛ,0

)1/3 = (
Ωm,0

1− Ωm,0

)1/3 (38)

Once again, equation (1) can be integrated to give

H0 t =
2

3
√

1− Ωm,0

ln
[
(a/amΛ)3/2 +

√
1 + (a/amΛ)3

]
(39)

In the limit of a� amΛ,

a(t) ≈ (
3

2

√
Ωm,0H0t)

2/3 (40)

In the limit of a� amΛ,

a(t) ≈ amΛ exp(
√

1− Ωm,0H0t) (41)

This has the correct form for a flat, Λ-dominated Universe, much like the exponential
dependence of inflation.

And now to answer the question, a = amΛ so that

tmΛ =
2H−1

0

3
√

1− Ωm,0

ln
[
1 +
√

2
]

(42)

= 0.702H−1
0 (43)

= 9.8 Gyr (44)

where H0 = 70 km s−1 Mpc−1. So this all started to happen about the time the Solar
System formed. No connection!
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5. What is the age of the Universe today?

If we plug (16) into (17), we get a general formula for the age today:

t0 =
2H−1

0

3
√

1− Ωm,0

ln


√

1− Ωm,0 + 1√
Ωm,0

 (45)

= 0.964H−1
0 (46)

= 13.6 Gyr (47)

Note that H−1
0 = 14.0 Gyr is the age of the Universe to within a few percent; the actual

age from the WMAP and Planck CMB satellites is 13.8 Gyr.
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