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The abundances of elements in stars are a critical clue to their
origins. Observed star-to-star variations in logarithmic abundance
within an open cluster are typically only ∼ 0.01− 0.05 over many
elements1–9, significantly smaller than the variation of ∼ 0.06−0.3
seen in the interstellar medium from which the stars form10–14.
It is unknown why clusters are so homogenous, and whether ho-
mogeneity should also prevail in regions of lower star formation
efficiency that do not produce bound clusters. Here we report
adaptive mesh simulations using passively-advected scalars in or-
der to trace the mixing of chemical elements as star-forming clouds
form and collapse. We show that turbulent mixing during cloud as-
sembly naturally produces a stellar abundance scatter at least ∼ 5
times smaller than that in the gas, sufficient to fully explain the
observed chemical homogeneity of stars. Moreover, mixing occurs
very early, so that regions with efficiencies ε ∼ 10% are nearly as
well-mixed as those with ε ∼ 50%. This implies that even regions
that do not form bound clusters are likely to be well-mixed, and
enhances the prospects for using chemical tagging to reconstruct
dissolved star clusters via their unique chemical signatures.

The question of how star clusters become chemically well-
mixed has received fairly little attention. With a few exceptions15,
work to date has been limited to simple analytic estimates16,
or to calculations omitting star formation and self-gravity17,18.
To improve this situation, we have performed a series of simu-
lations of star cluster formation including hydrodynamics, grav-
ity, and optically thin radiative heating and cooling. Our sim-
ulations use the orion code19–21, with a new implementation of
particle-mesh gravity (Methods, Figures 4, 5). We use initial con-
ditions based on the “colliding flow” model22. We consider a re-
gion containing gas of number density n0 = 1 cm−3 (mass density
ρ0 = 2.1 × 10−24 g cm−3) with initial temperature T = 5000 K.
The gas has a random turbulent velocity vrms, for which we con-
sider two values: 0.17 and 1.7 km s−1; we refer to runs with these
values as S and L, for small and large turbulence, respectively. On
top of the turbulent velocity, we set up two cylindrical regions 32
pc long and 32 pc in radius, centered on the x-axis, with their
closer ends separated by 64 pc, within which the gas has a uniform
velocity v0 = 9.2 km s−1, directed toward the other cylinder. To
trace chemical mixing the simulation includes two passive scalars
QL and QR, which have initial abundances of 1 within the left and
right cylinders, respectively, and 0 elsewhere. In addition to these
two simulations with smooth initial conditions, we also run a sim-
ulation C (for clumpy)15, in which we randomly add cold clumps
one coarse cell in radius with a filling fraction of 0.05 and a number
density nc = 132.5 cm−3; at this density the equilibrium temper-
ature is such that the pressure is in equilibrium with that of the

warm low-density background. Full details on the simulations are
given in the Methods section.

The overall evolution of our simulations is very similar to previ-
ous colliding flow simulations15,22,23 (Figure 1). The two streams
of gas converge rapidly, and compression of material at the heads
of the two cylinders leads to thermal instability and the formation
of a cold phase even before the two flows collide. For runs S and
L, the two streams collide just before 10 Myr of evolution, and this
produces a dense, cold, turbulent layer that is gravitationally un-
stable. The layer begins to form stars at ≈ 19 Myr in run S, and
approximately 50% of the gas in the two streams has been con-
verted to stars by ≈ 25 Myr of evolution (Figure 6). In run L star
formation begins at ≈ 25 Myr, and follows a similar time evolution
to run S thereafter. In run C the two streams collide at ≈ 6 Myr
because the dense cold phase is less decelerated by the warm phase.
Star formation begins immediately after collision, and ∼ 40% of
the gas in the two streams has been converted to stars by ≈ 13 Myr
of evolution. We note that all our simulations have star formation
rates that exceed observationally-inferred values24,25, but we select
this scenario to examine precisely because its rapidity minimizes
the time available to fully mix out chemical inhomogeneities. Our
results should therefore represent lower limits on the true amount
of mixing.

By the onset of star formation, the interaction region where
the flows have collided is reasonably well-mixed by the turbulence
(Figure 1). The ratio of passive scalar concentrations R = QL/QR

is very broad for material at densities up to ≈ 10−22 g cm−3,
reflecting the broad range of abundances in low-density gas. How-
ever, in gas with densities ∼ 10−21 g cm−3 or higher, the range of
compositions is dramatically reduced (Figure 2). For the densest
gas, the full range in R is at most a decade, and the vast majority
of the mass is spread over an even smaller range. This densest
gas is produced in regions where the two flows are converging and
mixing efficiently, and it is these regions that produce stars.

To assess how this affects stellar abundances, note that the
abundance scatter for some element in a collection of stars is for-
mally defined as S∗ = [

∑
(log a∗,i − log a∗)2/N ]1/2, where the sum

runs over all N stars present at any time, a∗,i is the abundance
of star i, and log a∗ = (1/N)

∑
i log a∗,i is the mean logarithmic

abundance of the stars. To compute this quantity from our sim-
ulations, let aL and aR be the abundances of some element of
interest in the left and right streams, respectively. Without loss
of generality we can choose aL < aR. For each star i formed in
the simulations, we know the masses ML,i and MR,i contributed
by each stream. The abundance a∗,i of that star is therefore
a∗,i = (aLML,i + aRMR,i)/(ML,i + MR,i). Note that the actual
values of aL and aR need not be chosen before the simulations are
run, since the only quantities actually measured from the simula-
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Figure 1 | Slices through simulation S at a variety of times, showing the total density and the densities of the passive scalar fields. (a) Gas density ρ in run
S on slices in the xy (left column) and yz (right column) planes. The rows show increasing times in the simulation, as indicated in each row. (b) Density of
passive scalars ρQL (red) and ρQR (blue) at the same times and in the same planes as in panel (a). The densities of the two tracers have been mapped to
the red and blue channels of the image, so that cells containing equal contributions from the two streams appear as purple, with the intensity of the purple
color proportional to the logarithm of the total density. In contrast, cells dominated by one passive scalar or the other appear as red or blue in color.
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Figure 2 | Distribution of gas in simulation S in density and mixing ratio at two different times. The color in each 2D pixel indicates the relative fraction
of mass in the corresponding bin of (ρ,R), where R = QL/QR is the ratio of the two passive scalars. Panel (a) shows the result at t = 9.8 Myr, just as
the two streams are beginning to collide, and panel (b) shows the result at t = 22.2 Myr, just after the onset of rapid star formation. Note that some of the
features seen in panel (b), including the streaks near R ≈ 3× 10−6 and R ≈ 10−1, are transients due to the chaotic nature of the mixing process. Similar
features appear at other times and for different simulation resolutions, but they come and go essentially randomly. Only the must more prominent structure
near R = 0 is persistent.

tions are ML,i and MR,i. We can therefore use a single simulation
to compute S∗ for an arbitrary value of the gas abundance ratio
aR/aL (see Figure 7).

We show in the Methods section that the dependence of S∗ on
aR/aL is characterized by two limiting cases: when aR/aL ≈ 1,
we have S∗ ≈ 2σY Sg ≡ SslopeSg. Here Yi = MR,i/(ML,i + MR,i)
is the mass fraction in star i provided by the right stream, σY =√∑

(Yi − Yi)2/N is the dispersion of the Yi values, and we have

defined the gas scatter as Sg = {[(log aL − log ag)2 + (log aR −
log ag)2]/2}1/2, where log ag = (log aL + log aR)/2 is the mean
logarithmic abundance in the two streams. In the opposite limit,
when aR/aL � 1, we have S∗ ≈ σlog Y ≡ Slimit, where σlog Y is the
dispersion of log Yi. Intuitively, the reduction in abundance scatter
is at its minimum when the gas is close to homogenous already,
and Sslope characterizes the factor by which the gas abundance
scatter is reduced in this limit. The quantity Slimit is the maximum
possible stellar abundance scatter no matter how inhomogeneous
the gas is.

We define the star formation efficiency ε = M∗/2Minf , where
M∗ is the total stellar mass and Minf is the mass in one of the
stream; Minf = 6.5 × 103 M� in runs S and L, and 4.9 × 104 M�
in run C. The general evolution of both Slimit and Sslope with ε
in run S is a rapid rise from 0 as the first stars form (Figure 3),
followed by a rapid fall by the time ε reaches ∼ 0.02. At val-
ues of ε > 0.1, we have Slimit . 0.4 and Sslope . 0.3, indicating
that a relatively small abundance inhomogeneity will be reduced
by a factor of at least 3 in the star formation process, and that
even a very large inhomogeneity will produce at most ∼ 0.4 dex of
scatter in the resulting stars. By the time the star formation effi-
ciency reaches ∼ 30%, the reduction in scatter is close to a factor
of 5, and the absolute upper limit on the scatter is ∼ 0.2 dex. In
run L, the stronger turbulence delays the onset of star formation
and allows more rapid mixing at early times, so the stellar scatter
starts small and very gradually increases with time. However, it
is always smaller than at the corresponding value of ε in run S.

Similarly, Slimit is smaller in run C than in run S, likely due to
the stronger global collapse in the clumpy run15. However, Sslope

is nearly identical in runs S and C. This suggests that clumpi-
ness does not significantly alter the amount of mixing much where
Sg � 1. We have also conducted convergence studies to verify
that our results for mixing are robust against changes in numerical
resolution (Methods, Figures 8 and 9).

Figure 3 indicates that the process of star formation leads to a
great deal of chemical homogenization as soon as even very mod-
est star formation efficiencies are achieved. For realistic efficien-
cies, which are probably in range of ∼ 10 − 50% on the scale of
star clusters26, we should expect the abundance scatter to be re-
duced by at least a factor of ∼ 4− 6 compared to that in the gas
from which the stars are formed, and even in the most chemically
inhomogeneous environments the scatter will be no more than a
few tenths of a dex. Since observed gas abundance scatters are
Sg ∼ 0.06− 0.3 dex over size scales of ∼ 0.1− 1 kpc10–14, a factor
of ∼ 5 reduction in the stellar abundance scatter compared to this
is sufficient to fully explain the observed scatter S∗ ∼ 0.01 − 0.05
dex seen in open clusters and moving groups.

Moreover, our results are also very encouraging for the
prospects of chemical tagging as a method of reconstructing the
star formation history of the Milky Way, and identifying potential
“Solar siblings”, stars born in the same cluster as the Sun27,28. We
find that both Slimit and Sslope reach values ∼ 0.1 − 0.3 even at
low star formation efficiencies ∼ 0.1, and that the degree of mixing
increases only modestly as ε rises from ∼ 0.1 to ∼ 0.5. Since star
formation sites with ε ∼ 0.1− 0.3 are likely the progenitors of the
majority of field stars, while those with ε ∼ 0.5 likely represent
the sites of bound cluster formation, our results imply that the
clusters and moving groups that have been studied for chemical
homogeneity thus far are not atypical in their degree of chemical
mixing. They are at most marginally better mixed. Thus it is
likely that even those stars that did not form in bound clusters
will be chemically similar to their neighbors formed at the same
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Figure 3 | Two measures of the stellar abundance scatter as a function of
star formation efficiency in simulations S, L, and C. (a) Sslope versus star
formation efficiency ε, where Sslope indicates the factor by which the gaseous
abundance scatter Sg is reduced by star formation in the limit where Sg � 1.
(b) Slimit versus star formation efficiency ε, where Slimit is the maximum
possible stellar abundance scatter in the gas where Sg � 1.

point in space and time, and that these unique chemical signatures
can serve as a fingerprint to identify these common formation sites
even as stars disperse throughout the Galaxy. Indeed, with a group
finding technique29 and high resolution data, recent work30 shows
evidence that chemical tagging of field stars does identify coeval
groups of stars. We discuss the implications and broader context
of our work in more detail in the Methods section.
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1 Methods.

Equations and Algorithms.

We perform simulations using the parallel adaptive mesh refine-
ment (AMR) code orion. Orion utilizes a conservative second order
Godunov scheme to solve the equations of compressible gas dynam-
ics coupled to a multi-grid method to solve the Poisson equation
for gas self-gravity19,20. We treat radiative heating and cooling by
parameterized heating and cooling curves, which we take from the
approximation of Koyama & Inutsuka31. In self-gravitating col-
lapse problems, it is necessary to cut off the collapse at finite res-
olution in order to render the problem computationally tractable,
and orion handles this problem by replacing regions that become
Jeans-unstable at the finest allowed resolution by sink particles21.
The full set of equations solved by the code is

∂ρ

∂t
+∇ · (ρv) = −

∑
i

ṀiW (x− xi) (1)

∂(ρv)

∂t
+∇ · (ρvv) = ∇P − ρ∇φ

−
∑
i

ṗiW (x− xi) (2)

∂(ρe)

∂t
+∇ · [(ρe+ P )v] = ρv∇φ−

∑
i

ε̇iW (x− xi)

− n2Λ + nΓ (3)

∂(ρQk)

∂t
+∇ · (ρQkv) = −

∑
i

Ṁk,iW (x− xi) (4)

∇2φ = 4πGρ+ 4πG
∑
i

Miδ(x− xi) (5)

d

dt
Mi = Ṁi (6)

d

dt
Mk,i = ˙Mk,i (7)

d

dt
xi =

pi

Mi
(8)

d

dt
pi = −Mi∇φ+ ṗi (9)

where ρ, P , and v are the fluid density, pressure, and velocity,
respectively, e = (1/2)v2 + P/[ρ(γ − 1)] is the specific energy of
the gas, and φ is the gravitational potential. We do not attempt
to model the transition from atomic to molecular gas, and thus we
adopt and constant ratio of specific heats γ = 5/3, as appropriate
for a monatomic ideal gas. Passive scalars or “colors” are denoted
with Qk, where k is the index of the tracer in question. We use
these to represent and track abundance patterns in the gas.

Terms subscripted by i refer to sink particles, which represent
stars; xi, Mi, pi, and Mk,i are the position, mass, momentum,
and mass of passive scalar k in the ith star, and Ṁi, ṗi, ε̇i, and
Ṁk,i are the rates at which those stars add or remove mass, mo-
mentum, energy, and the mass of the kth tracer from the gas. The
quantity Wi is the weighting kernel that spreads the stellar inter-
action over some number of computational cells. These quantities
are all computed following the sink particle algorithm introduced
by Krumholz et al.21, which estimates the accretion rates onto sink
particles by fitting the gas around them to Bondi-Hoyle flow.

The quantities n, Γ, and Λ are the number density, heating
function, and cooling function. Since we are interested in sim-
ulating flows in the atomic interstellar medium that lead to the
formation of star clusters, we adopt a mean molecular weight of
1.27, so n = ρ/(1.27mH), and we adopt the approximate heating

and cooling functions suggested by Koyama & Inutsuka31,

Γ = 2.0× 10−26 erg s−1 (10)

Λ

Γ
= 107 exp

(
−1.184× 105

T + 1000

)
+ 1.4× 10−2

√
T exp

(
−92

T

)
cm3 (11)

Here the temperature T is in K, and is given by T = (e−v2/2)/[(γ−
1)kB ]. Physically, Γ represents the rate of photoelectric heating per
particle, while Λ describes cooling due to emission in the Lyman
α and C+ 158 µm lines, which dominate cooling at high and low
temperatures, respectively.

We use the AMR capability in our code to increase the resolu-
tion in regions undergoing gravitational collapse. We refine by a
factor of 2 any cells in which the local density exceeds the Jeans
density

ρJ = J2 πkBT

µmHG∆x2
, (12)

where we use a Jeans number J = 1/8, µ = 1.27 is the mean
molecular weight, and ∆x is the cell size. Refinement continues
up to some specified maximum level. If the density exceeds the
Jeans density on this maximum level, evaluated with a Jeans
number J = 1/4, we introduce a sink particle.

Sink Particle Algorithm.

For the purposes of this computation, we have modified the
implementation of sink particles in the orion code slightly from
the method described by Krumholz et al.21. First, in addition
to tracking the mass and momentum of sink particles as in the
original method, we also track the masses of passive scalars. We
compute the rates at which passive scalars are incorporated into
sink particles by assuming that the accretion rate for each passive
scalar in a given computational cell is equal to the overall mass
accretion rate from that cell multiplied by the concentration Qk of
the passive tracer in that cell. Thus the total mass of passive scalar
Mk =

∫
ρQk dV +

∑
iMk,i over the entire computational grid plus

that in sink particles is conserved by the accretion process, as are
the concentrations Qk in the cells from which accretion occurs.
Since we initialize the passive scalar abundances QL to unity in
the left stream, and zero elsewhere, the mass contributed to star i
from stream L is identical to the mass ML,i of the passive scalar
in that star, and similarly for MR,i.

Second, in the original Krumholz et al.21 method, the veloci-
ties of sink particles were updated by calculating the gravitational
force between every cell and every sink particle. The code then
performed an operator-split step during which the sink particle
positions and velocities were evolved under their mutual gravita-
tional interaction using a sub-cycled ordinary differential equation
solver. While this approach is highly accurate, and allows the code
to correctly evolve sink particle orbits even when they are smaller
than the size of a hydrodynamic cell, the computational cost of
this method scales as the number of sink particles times the num-
ber of computational cells, plus the square of the number of sink
particles. This is prohibitively expensive for the large number of
sink particles (& 5000) that form in the simulations we present
here.

For this reason, we have implemented a particle-mesh (PM)
method to update sink particle positions and velocities. Before
solving the Poisson equation, we assign the mass carried by sink
particles to the computational grid, so that this mass is included
when solving for the gravitational potential. We perform this mass
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assignment using a cloud-in-cell interpolation (CIC) scheme32.
Once we have obtained the potential, we update the positions and
velocities of the particles. For the velocity update, we compute the
accelerations of the particles from the gradient of the potential re-
turned by the Poisson solve, interpolated in space to the positions
of the particles using the same CIC interpolation scheme. The
use of the same interpolation for the mass assignment and force
computation steps ensures that self-forces vanish to the accuracy
of the Poisson equation solution.

We have performed two tests of this implementation. The first
is maintaining the orbit of a binary system. We place two sink
particles of mass 10 M� into a computational domain that runs
from [−2.5 × 1013, 2.5 × 1013] cm in each direction. Particle 1 is
initially placed at (3.125×1012, 0) cm with velocity (0, 1.033×107)
cm s−1. Particle 2 is initially placed at (−3.125× 1012, 0) cm with
velocity (0,−1.033× 107) cm s−1. The separation and velocity we
have chosen are such that the particles should perform a circular
orbit at constant radius centered on the origin. In addition to
the two sink particles, we fill the computational domain with a
uniform, isothermal gas of density 1.0 × 10−22 g cm−3 and sound
speed 1.3 × 107 cm s−1. The density and sound speed are such
that the mass accreted onto the particles per orbit should be a
negligible fraction of their initial mass, and thus interaction with
the gas should have no effect on the orbit.

We perform the test at two different resolutions: 16 and 64 cells
per linear dimension, corresponding to cell sizes of 3.125×1012 cm
and 7.8125×1011 cm, respectively. Thus the particles are separated
by only 2 computational cells at the lower resolution, and 8 cells at
the higher resolution. In Figure 4, we show the separation between
the two sink particles tracked over many orbits. We see that the
algorithm maintains the orbital separation to a precision of ∼ 10%
in the lower resolution test, and ∼ 1% in the higher resolution test,
with no apparent secular drift. In both cases the error is roughly
1/10 the size of a computational cell. Given that the forces felt by
the particles are only interpolated to an accuracy of one cell, this
is the best precision that could be expected.

The second test is Bondi accretion. We place a sink particle
of mass 10 M� at the center of a computational grid that is filled
with an isothermal gas of sound speed 1.3×107 cm s−1, so that the
Bondi radius of the particle is 7.85× 1012 cm. The computational
grid is 1.4 × 1014 cm on a side, and has a linear resolution of 256
cells, so that the size of a cell is ∆x = rB/14.4, and the length
of the computational box is L = 17.8rB. We initialize the density
and velocity profile of the gas to the analytic solution for Bondi
accretion, and then allow the computation to evolve for a time
t = 5rB/cs.

We run this test twice, once with the original orion sink
particle implementation, and a second time with our new PM
method. We show the results of both tests in Figure 5. We can
see that the algorithm maintains the density and infall velocity
outside the accretion kernel quite well. The accretion rates are
also close to the analytical result, with errors of 3.4% for standard
algorithm and 5% for PM algorithm, respectively. The small
differences in velocity between the two algorithms at r/rB ∼ 10
are to be expected, because the gas at this distance is near the
edge of the computational box, and the algorithms differ slightly
in how they treat boundary conditions. The PM method imposes
periodic boundary conditions on the potential, such that the
gravitational force exerted by the particle goes to zero smoothly
as the distance from the particle approaches half the size of the
computational box. In contrast, the standard method simply uses
a 1/r2 force law for all cells, so the force does not go to zero
smoothly at the box edge.

Figure 4 | Variation in distance d between two stars in a test of how well
our new particle-mesh gravity implementation can maintaing the orbit of a
binary. (a) Distance between two stars d minus initial distance d0, in a test
with d0 = 2∆x, where ∆x is the cell size. The left axis shows the d − d0
normalized to d0, and the right axis shows it normalized to ∆x. Perfect
accuracy would be a flat line at d− d0 = 0. (b) Same as (a), but for a test
with d0 = 8∆x, so the two stars are initially separated by 8 cells.
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Figure 5 | Comparison between the analytic solution for Bondi accretion
and the numerical results produced by an orion simulation. (a) Density
normalized to density at infinity ρ/ρ∞ versus radius normalized to the Bondi
radius r/rB . We show the analytic solution (black line), the result using
orion with its standard implementation of sink particle gravity (red squares),
and the result using our newly-implemented particle-mesh gravity method.
The numerical results show averages over radial bins. To prevent the numerical
results from lying completely on top of on another and from obscuring the line
for the exact result, we show only every fourth radial bin, and the bins we
show are offset between the two simulations. The dashed vertical line shows
the accretion kernel radius of 2 cells. (b) Same as (a), but now showing the
infall velocity normalized to the sound speed, v/cs.

Initial Conditions and Resolution

Runs S and L both start with a uniform density n0 = 1 cm−3

(mass density ρ0 = 2.1 × 10−24 g cm−3) and a temperature of
T0 = 5000 K; given our choice of heating and cooling functions, this
is the equilibrium temperature at that density. In addition to the
uniform velocity fields imposed within the converging cylinders (see
main text), we impose a turbulent velocity field with a dispersion
of 0.17 (run S) or 1.7 (run L) km s−1. We generate this field in
Fourier space by choosing random phases and drawing amplitudes
following a power spectrum that is flat at wavenumbers k in the
range 4 ≤ kLbox ≤ 8 and zero elsewhere. Here Lbox = 128 pc is
the size of the (cubical) computational domain. Our simulations
use periodic boundary conditions, and for runs S and L we use a
base grid of 2563 for our coarsest level, plus 2 levels of refinement.
Thus the base grid resolution is ∆x = 1/2 pc, and the minimum

cell size is ∆xmin = 1/8 pc.
The setup is identical for run C, except that in 5% of the

coarse cells we replace the warm medium with a cold clump with
number density to nc = 132.5 cm−3 and temperature to Tc = 37.7
K, which is the equilibrium temperature at this density. We
choose this density and temperature so that ncTc = n0T0, and the
cold clumps are initially in pressure balance with the surrounding
warm gas. We randomly choose which cells will be cold rather
than warm, and the probability of a cell being cold is independent
of whether it is part of one of the streams or is part of the medium
between the streams.

Characterizing the Stellar Scatter.

Here we show that the function S∗(Sg), which characterizes the
stellar abundance scatter as a function of the initial gas abundance
scatter, is a linear function in the limit Sg → 0, and reaches a finite
limiting value as Sg →∞.

First consider the latter case, Sg → ∞. Without loss of gen-
erality we will assume aL < aR. Since we are working in the
limit Sg → ∞, this implies that aR/aL → ∞ as well. We define
Xi = ML,i/(ML,i + MR,i) and Yi = MR,i/(ML,i + MR,i) as the
mass fractions in star i coming from the left and right streams,
respectively, so that a∗,i = XiaL +YiaR. As long as Yi 6= 0 (i.e., as
long as there is any mixing at all), then in the limit aR/aL → ∞
we have a∗,i → YiaR. Thus the mean stellar abundance is

log a∗ →
1

N

∑
i

log(YiaR) = log aR + log Y , (13)

where log Y = (1/N)
∑

i log Yi is the mean value of log Y over all
stars. The scatter therefore approaches

S∗ →
√

1

N

∑
i

[
log(YiaR)− log aR − log Y

]2
(14)

=

√
1

N

∑
i

(log Yi − log Y )2 ≡ σlog Y , (15)

where the quantity σlog Y is simply the scatter in the logarithm
of the mass fraction contributed by each stream. Intuitively, this
makes perfect sense: if one incoming stream contains iron and the
other does not, then clearly the scatter in the logarithmic iron
abundance must reduce to the scatter in the logarithm of the mass
fraction provided by the iron-bearing gas.

Now consider the opposite limit, Sg → 0, in which case aL ≈
aR. To analyze this limit, we set aR = (1 + 2ε)aL and take the
limit ε → 0. Inserting these values into the definition of Sg =
{[(log aL − log ag)2 + (log aR − log ag)2]/2}1/2, Taylor expanding
about ε = 0, and dropping terms beyond leading order, we obtain

Sg =
ε

ln 10
. (16)

Similarly, the mean stellar abundance can be expanded to give to
leading order

log a∗ = log aL +
2ε

ln 10
Y , (17)

where Y = (1/N)
∑

i Yi is the mean value of Yi. The stellar abun-
dance scatter thus becomes

S∗ =
2ε

ln 10

√
1

N

∑
i

(Yi − Y )2 ≡ 2ε

ln 10
σY (18)

to leading order, where σY is the dispersion in mass fraction. We
therefore have

S∗ ≈ 2σY Sg (19)
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Figure 6 | Number of stars and star formation efficiency as a function of time.
(a) Number of stars in simulations S, L, and C. (b) Star formation efficiency
ε versus time in the same simulations.

in the limit Sg → 0.

Convergence.

Convergence is a critical issue for any calculation of mixing,
since, in a grid-based code without explicit diffusion such as ours,
the chemical (and physical) diffusivity is directly set by the grid
size. We do not expect all quantities in our simulations to converge
– indeed, a number of authors have pointed out that there appears
to be no converged solution the problem of computing the mass
spectrum of objects produced by gravitational fragmentation of a
turbulent medium with an isothermal or sub-isothermal equation
of state26,33. We therefore do not expect things like the mass
distribution or number of stars in our simulations to converge.
However, we can still check if the amount of chemical mixing is
converged, or, more basically, if there is a trend of increasing or
decreasing mixing with resolution that we can use to extrapolate.

To assess this question, we have performed runs S3, S4, and
512S1, which have identical physical conditions as run S, but dif-
fer in resolution. Runs S, S3, and S4 all have the same base grid
resolution, but differ in the maximum AMR level permitted be-
fore sink particles are introduced. Since refinement is based on
the Jeans condition, these runs are therefore identical in their res-
olution of low-density, non-self-gravitating gas, but runs S3 and
S4 offer factors of 2 and 4, respectively, better resolution in the

Figure 7 | Stellar abundance scatter S∗ versus gaseous abundance scatter
Sg for the final time in simulation S.
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Figure 8 | Stellar abundance scatter S∗ as a function of gas abundance scatter
Sg for runs S, S3, and S4, measured at the time when the star formation
efficiency ε ≈ 0.06.

self-gravitating regions from which stars form. The corresponding
minimum cell sizes are ∆xmin = 1/16 and 1/32 pc. In comparison,
run 512S1 has the same peak resolution as S (∆xmin = 1/8 pc),
but uses twice as many cells in its base grid. Run 512S1 therefore
provides better resolution in the diffuse, non-self-gravitating gas
(∆x = 1/4 pc), but the same resolution in self-gravitating regions.

We plot Slimit and Sslope as a function of star formation effi-
ciency ε for all runs in Figure 8. We also plot S∗ as a function
of Sg for runs S, S3, and S4 at a fixed star formation efficiency
ε ≈ 0.06 in Figure 8. For the runs that have base grid of 256 cells,
the plots show strong signs of convergence. Qualitatively, runs S,
S3, and S4 all show similar variations of S∗ and Slimit versus ε.
The only substantial difference is for Slimit in run S at very low ε,
when there are very few stars present and the results are therefore
highly stochastic. In contrast, for runs S3 and S4, Sslope values
are almost the same even when the star formation efficiency ε is
less than 0.1. The values of Slimit in these runs are within 10% of
one another at all times. We can see this even more clearly from
Figure 9, where the curves of S∗ versus Sg for runs S3 and S4 are
fairly close. The two curves overlap when Sg < 1 and differ only
slightly when Sg →∞.

In comparison, the time evolution of S∗ and Slimit in run 512S1
is somewhat qualitatively different: the absolute level of scatter is
smaller than in run S at all times, and the value of Slimit is smaller
than in runs S3 and S4 at almost all times as well, while the value of

Figure 9 | Evolution of two measures of the abundance scatter versus star
formation efficiency ε in runs S, S3, S4, and 512S1. (a) Evolution of Sslope,
the factor by which the abundance scatter is reduced in the limit where the
gas abundance scatter Sg is small. (b) Evolution of Slimit, the maximum
stellar abundance scatter in the limit of infinite gas abundance scatter.
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S∗ is about the same. Increasing the base grid resolution therefore
also appears to result in reduced scatter. This may occur because,
with finer resolution of the base grid, turbulent mixing is better
resolved in lower density regions, thus make the mixing process
more efficient. So the rapid rise of scatter initially of runs with base
grid resolution of 256 may be caused by the gravitational collapse
of poorly mixed regions. The same regions are better mixed in
run 512S1 because of better resolved turbulence, so the rapid rise
disappears in run 512S1 and the scatter is also smaller thereafter.

Thus we find that increasing either the finest AMR level or
the number of cells per linear dimension on the coarsest AMR
level reduces the abundance scatter, although the results converge
relatively fast and especially Sslope does not change much between
different runs. This result might initially seem surprising, since
increasing resolution should decrease the diffusivity of the code.
However, this effect appears to be outweighed by the better
resolution of the turbulence, perhaps associated with a better
separation between the warm and cold phases, provided by a finer
grid. In any event, the conclusion that the abundance scatter is
reduced by a factor of ∼ 3 − 6 compared to that in the gas from
which the stars are formed appears to be robust to changes in res-
olution. If anything, we have underestimated the degree of mixing.

Implications and Broader Context.

Chemical homogeneity in open star clusters is of interest for
a number of reasons, and our results therefore have a number of
important implications. One important implication is for chemical
tagging34. The field stars that make up the bulk of the Galactic
disk most likely consist of dissolved star clusters, each carrying a
unique chemical tag marking its birth site. If one measures the
abundances of enough elements in field stars with enough preci-
sion, then in principle it should be possible to use this tag to infer
that two seemingly-unrelated field stars in fact originated in the
same cluster, and in the process one could answer a number of out-
standing questions about the origin of the Sun and the movements
of stars through the Galaxy27,28. There are two major surveys
underway that include among their goals performing such recon-
structions: the Gaia-ESO Public Spectroscopic Survey35, and the
Galactic Archaeology with HERMES Survey.

However, in the absence of a theoretical explanation for why
star clusters are chemically homogenous, and under what circum-
stances we expect homogeneity to prevail, doubt must remain
about these techniques. For example, observations indicate that
only a small fraction of star formation produces gravitationally-
bound open clusters36, and it might be the case that the observed
chemically-homogenous open clusters and moving groups repre-
sent a mode of star formation that produces an unusually-high
degree of chemical homogeneity. Our work showing that chemical
homogeneity is achieved even at very low star formation efficien-
cies should help lay this concern to rest. Of course for chemical
tagging to be practical it must be the case that clusters are not
only internally chemically-homogenous, but that they are also suf-
ficiently distinct from one another that it is possible to distinguish
between them using the types of moderate-resolution spectra that
can be obtained for large samples28,29,37, and our study of individ-
ual clusters does not address this second requirement. However,
recent practical successes in using chemical tagging to identify co-
eval stellar groups30 suggest that it is satisfied as well.

More broadly, our work has identified a powerful new process
for chemically homogenizing the stars in a galactic disk. Observa-
tions show that, at a given overall metallicity, stars in the Milky
Way thin disk show remarkably little abundance variation38. This

must partly be due to homogenization of the interstellar medium
(ISM) across galactic scales, which wipe out large-scale variations
in chemical abundance. Supernova-driven turbulence appears to
mix large-scale modes most effectively17, while thermal instability
mixes small modes but still leaves small filaments of cold ISM with
noticeably different abundances than their surroundings18. These
mechanisms likely explain the relatively low logarithmic abundance
scatter of ∼ 0.1 seen in the ISM. However, to explain the even
smaller spread in stellar abundances seen on galactic scales likely
requires a further mixing mechanism that can wipe out inhomo-
geneities on very small scales within star-forming clouds. It seems
likely that the turbulent mixing mechanism we have identified in
this work is responsible.
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