: ,_\ The University of Sydney Faster Further

Astrophotonics: a new generation of
astronomical instruments

Joss Bland-Hawthorn
Federation Fellow, University of Sydney
Leverhulme Professor & Merton Fellow, Oxford

University of Sydney - SIfA: J Bryant, A Buryak, SC Ellis, M Ireland, J O'Byrne, JG Robertson, W Tango, P Tuthill
University of Sydney - IPOS: A Argyros, SG Leon-Saval, D Moss

Macquarie University/Anglo-Australian Observatory: N Cvetojevic, AJ Horton, N Jovanovic, JS Lawrence
University of Potsdam: D & R Haynes, A Kelz, HG Lohmannsroben, MM Roth

University of Bath: TA Birks

Industrial Partners: Redfern Optical Components (AU), Crystal Fibre (DK), Centre for Integrated Photonics (UK)
Astrophotonica Europa (10 schools): J Allington-Smith

Laboratoire d'Astrophysique Marseille: J-G Cuby, J Boulesteix

University of Lyon: R Bacon

University of North Carolina: GN Cecil

University of California — San Diego: N Alic, JM Chavez Boggio, S Radic

University of Maryland: R Roy, S Veilleux, S Vogel

Goddard Space Flight Centre: J Mather, N Gehrels

Harvard Smithsonian: G Furescz

o

® astrophotonics > A0

The University of Sydney




Astrophotonics: history

1980: light transport in MMFs (Australia, UK, USA)

1988: field reformatting with MMFs (France, Russia)

1996: interferometry with SMFs (France)

2002-5: photonic functions in MMFs (Australia, UK)

2004 laser guide star with PCFs (Japan)

2006: integrated photonic spectrograph (Australia)

2009: focus issue — Optics Express (worldwide)

2010: special sessions at ESTO/Frankfurt, FiO/Rochester
2010: astrophotonics institutes to open in Potsdam, Marseille
2011: astrophotonics symposium at CLEO/Rostock

2011: astrophotonics instrument GNOSIS to see "first light"
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Astrophotonics

Artificial stars for AO: to correct for Earth's turbulent atmosphere
Pupil remapping: to detect faint planets directly around nearby stars
Optical frequency combs: to achieve precise velocities to detect planets
Beam combiners: to combine many optical beams for interferometry
Sky suppressing fibres: to remove unwanted night sky emission
Integrated spectrographs: ultracompact devices fed by fibres
Hexabundles: robotically positioned imaging fibre bundles

Laser communications: to maintain spacecraft metrology
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AAT IRIS2, R=2500 (75% of OHSupp region 1435-1625nm,|R=10,000), 1x7
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Astrophotonics:
SMF coherent light tfransport, beam
combining, signal processing



Fringe benefits: the spatial filtering advantage of single-mode fibers

Stellar interferometry: S
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Figure 1. Conceptual design of a stellar fiber interferometer.
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Interferometric arrays




Integrated optics
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Asfrophotonics:
MMF incoherent light fransport, multiplexing,
wide-fielding and reformatting



Extremely Large Telescopes




The largest telescopes w1H§§lways be on, Earth _
The major limitations of the Earth's atmosp’here must be solved.




The atmosphere is a worthy adversary

The sky 1s bright
and highly variable

2MASS airglow experiment
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Fibre Bragg Grating

Optical fibre with periodic variations in n
Fresnel reflections at each boundary
Small but in phase with each other
Strong reflection at a single wavelength

Fiber core

Bragg grating Fiber
f\ cladding
Input signal
D é
7"Bragg Output signal

JBH et al 2008; Buryak et al 2009

Ay =2nA

Ay, =2nA



On-sky demonstration (Dec 08)

40 T T T T T J - T T T T T l
AAT IRIS2, R=28500 (75% of| OHSupp region 1435 "1625[”“. R=10,000), 1x7

1500 1550 1600 1650

/ ultra-broadband FBGs within 1x7 photonic lantern
OH lines suppressed at R=10,000

Input fibre exposed to starlight and moonlight so zero b/g not reached here



Adaptive
opftics

Single Conjugated AO
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Diffraction limit with perfect AO correction

PSF diameter in microns

P =1.22AF

or 10 microns at 1500 nm for f/5 (NA=0.1).

F = f/ratio

This is well matched to SMF iff flat wavefront
and gaussian illumination.

But telescope PSF is imperfect gaussian such that M =7
Horton & JBH 2006, Corbett 2007



AO produces point spread functions with a

“core” and “halo”

Image

Intensity

«—

Ratio of peak intensity to

Definition of “Strehl™:

that of “perfect” optical
system

—_—» X

* When AO system performs well, more energy in core
* When AO system is stressed (poor seeing), halo contains larger fraction

of energy (diameter ~ ry)

* Ratio between core and halo varies during night

Shaklan & Roddier 1998



Strehl ratios: achieved vs. target .

Optical System —_—>

Optical System
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I (900 nm) <0.05 0.15
J (1250 nm) 0.15 0.3
H (1650 nm) 0.3 0.5
K (2200 nm) 0.7 0.8
L (3450 nm) 09 0.95
M (4700 nm) 0.9 0.95
N (7-14,000 nm) 0.9 0.95




How many unpolarized tfransverse modes do
we need for efficient MME coupling?

vV 2 1D LP,, (P, 1P,

M=——  v="2NaA
4 2 o 3

LPs LPy, LP4
D=80um core, NA=0.1, A=1500 nm

T HED

Number of modes, M

n.b. mode conservation is equivalent to étendue (A€2) .
LPs; LPys

Without AO, we need 40-80 modes to cover near IR, more in optical

Leon-Saval et al 2005; Corbett 2007



For mainstream astronomy, we need
photonic action in a multimode fibre

How is this possible?



MMF  transition SMF cores

The photonic lantern: R
single mode action in a MMF

Leon-Saval; Birks & JBH (2005)

Noordegraf et al (2009, 2010)

Argyros, Leon-Saval & JBH (2010) QosTrophOTOﬂiCS
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Infegrated photonic spectrograph

Instruments without optics: an integrated photonic spectrograph

J. Bland-Hawthorn®, A. Horton 2006
Anglo-Australian Observatory, 167 Vimiera Rd, Eastwood, NSW 2122, Australia

We explore the use of array waveguide gratings and photonic
echelle gratings integrated onto a chip.

Typical device working at R~2000, say, will be 4 cm in size.
Each circuit is fed by a single-mode fibre.

The light on exit is dispersed onto a detector array.
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First device
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Normalized Intensity

Normalized Intensity

Faster Further

=" The University of Sydney

Characterization and on-sky demonstration of
an integrated photonic spectrograph for

astronomy 2009
N. Cvetojevic,' J. S. Lawrence,">" S. C. Ellis, * J. Bland-Hawthorn,” R. Haynes,' and A.
Horton'
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Cross dispersion
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Grating theory

Scattering centres with line density p collimator camera
and extra path difference ¢

sinf +sinf, = (mA + q)p

Angular dispersion independent of ¢ Bulk -
disperser e Y
A = dA _ cos6
do  mp

For conventional gratings, g=0, but non-zero ¢ is critical to AWGs
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Cyclic Array Waveguide  IBH etal (2010)

photonic
lantern
attaches

here f /

[lluminate one input to get output spectrum in single order.
With cross dispersion, we can use many inputs and multiple orders.
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Cross dispersion

20x/ across
100 deep



PIMMS #0

Telescope

OH suppression
Lantern

cabling

Camera CCD
Collimator |Grating O §

The optical system 1s always diffraction limited regardless
of input which leads us to a remarkable conclusion.

Slit mask



PIMMS #1

Telescope

OH suppression
Lantern
Camera CCD
Array = I
waveguide
Ribbon & Cross
cabling = dispersion

The optical system 1s always diffraction limited regardless
of input which leads us to a remarkable conclusion.



PIMMS#1: we have begun to make entire instruments from
astrophotonic components...




PIMMS#1: we have begun to make entire instruments from
astrophotonic components... now with OH suppression.




Faster Further

1. PIMMS is diffraction limited by
definition

2. PIMMS achieves high m on
-axis unlike normal gratings

3. PIMMS is compact for any R,
slit width y, telescope diameter
D or beam speed /D
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Major benefits:

Minimal bulk optics & engineering

Size reduction: cryo cooling, metrology, control
Detector integration

"Design your own spectrometer”

Mass production & short delivery times

Cost & risk reduction



Multi-Object AO
Wavefront sensor in pseudo-closed loop + GLACO

Reference * - Te
Stars

Futurescopes

High
Altitude
Layer
e Astrophotonic instruments on ELTs Ground -
ayer -
e Complex AO systems: MCAO, MOAO, GLAO Telescope
* Radio interferometers: SKA Wide field mode
Ground conj. DM
e Optical laser communications: GR experiments Narrow field SRR
e Gravity wave observatories WFS ‘ ,

LJFY

e Particle physics beamline instruments

 Remote locations: Antarctica, marine, balloon, space
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Future applications: we welcome
feedback from other applied sciences
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Uncertainties: industrial sector

1. PIMMS is expensive in pixel usage, but probably comparable to
existing cross-dispersed instruments

* PIMMS will need next-generation detectors for faint sources
(...these are coming!)

2. PIMMS needs interest from industrial sector in order to keep the
development and mass production costs down
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Photonic functions

1D — 3D photonic waveguides
Switching, masking, reformatting
Dispersing, filtering, tuning
Chirping, timing

Beam conversion, shaping, splitting

Beam merging, switching, steering
Beam polarizing

Interferometry, metrology, sensors...



Asfrophotonics:
supercontinuum, opftical frequency combs,
ultrastabllity, calibration, feedback control



Hunting for extrasolar
planets

A laser frequency comb that enables radial velocity
measurements with a precision of 1cms™’

Chih-Hao Li"?, Andrew J. Benedick’, Peter Fendel**, Alexander G. Glenday'?, Franz X. Kértner’, David F. Phillips’,
Dimitar Sasselov’, Andrew Szentgyorgyi' & Ronald L. Walsworth'?
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Real time cosmic evolution!
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Benefits to astronomers

« GNOSIS: AAT (2010/11); Gemini (2012)
— / cores, J+H; 100 cores, J+H

 FIREBALL: VLT/Flames upgrade (2012)
— 130 cores x 100 hexabundles

* PIMMS#2: In progress



Anticipated photonic developments

full UV to mid-IR (<300nm to >10,000nm)

1D
— all optical (AQ2) transitions to be in-fibre

— wider range in NA, core size

— lower bend loss, minimal NA upscattering

2D/3D

o all optical (AQ) transitions in substrate
— new and better materials (e.g. chalcogenide)

— insertion loss <0.1 dB cm™!
space-hardened materials
nano-detectors
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How do science goals map to functional
requirements for astrophotonics?

PPARC's Key Science Questions

Home > Our Research >
Research Programme Planning

PPARCs research programme addresses some | pm
of the biggest scientific issues. Addressing these
issues requires long-term strategic planning and
investment to provide UK researchers with
access to the state-of-the-art facilities necessary
for competitive research. Planning a long-term
. o o . investmelfwt fstrategy requifres consideration of a
range of future scientific opportunities and
. detectlon SenSItIVIty options and the PPARC Road Map is intended to
set these out in a structured way. The Road
Map is built around nine key Science Questions:

_ étendue (throughput) . What_is the universe made of and how
does it evolve?
e What is the origin of mass?
. e Are we alone in the universe?
1 1 t o Why is there more matter than antimatter?
- angu ar reSO u lon « How do galaxies, stars and planets form
and evolve? et
Is there a unified theory of all particle

- nOise SuppreSSion . i\lr\}t:ars;t::'};?e laws of physics in extreme

conditions?
* How does the Sun affect the Earth?
o What are the origins and properties of the

e stability and calibration

 multiplexing, sampling and reformatting

e networking, sensing and communications

e unit cost reduction!



