Astrophotonics: the future of astronomical instrumentation

Joss Bland-Hawthorn

Institute of Photonics & Optical Science Sydney Astrophotonic Instrumentation Lab Sydney Institute for Astronomy

(1975)

Large Zenith Telescope

British Columbia, Canada

(2003)

Earth-Sun L2 point Earth-trailing

Gaia

(2014)

James Webb Space Telescope

Earth-Sun L2 point

(planned 2018)

Magellan Telescopes Las Campanas, Chile (2000/2002)

Giant Magellan Telescope Las Campanas Observatory, Chile (planned 2020)

Overwhelmingly Large Telescope

Human

at the

same scale

5<u>10</u> m 10 20 30 ft

European Extremely

Large Telescope

Cerro Armazones,

Chile (planned 2022)

Thirty Meter Telescope

Tennis court at the same scale

Kepler

solar orbit

(2009)

Telescope

Low Earth

Orbit

(1990)

(cancelled) Arecibo radio telescope at the same scale

Telescopes gather light from space...

Some of the biggest questions nearby & far away

THE UNIVERSITY OF

Transit Light Curves

Will Gater

20/20 vision ~ 60" 20/10 vision ~ 40"

Human eye DL ~ 20"

Stable atmosphere ~ 1" (seeing)

Moon

This is why Copernicus discovered Earth's orbit and not the Ancient Greeks

Venus

Is there any way to break this ?

This has no dependence other than f-ratio, and within range of photonics.

But not well matched to SMF modal diameter since NA = D / 2 f = 0.05

Note that f/2.5 to f/5 is ideal for photonics.

THE UNIVERSITY OF SYDNEY

Coupling efficiency into SMF

Coupling starlight into single-mode fiber optics

Stuart Shaklan and Francois Roddier

THE UNIVERSITY OF SYDNEY

We have calculated the efficiency with which starlight can be coupled into a single-mode fiber optic that is placed in the focal plane of a telescope. The calculations are performed for a wide range of seeing conditions, with and without rapid image stabilization, and for a wide range of wavelengths. The dependence of coupling efficiency on the *f*-ratio of the incident beam is explored. Also, we calculate the coupling efficiency as a function of displacement for a perfect Airy pattern. We have also used a computer program which simulates atmospheric wavefronts to determine the variance of instantaneous coupling efficiency as a function of seeing. In perfect conditions, the maximum efficiency at the LP₁₁ mode cutoff is 78% due to the mismatch of the Airy pattern and the nearly Gaussian mode of the fiber. Maximum total coupled power is attained at $d/r_0 = 4$ with rapid image stabilization.

<u>Theory (1988):</u> Airy disk \rightarrow SMF ~ 78% maximum (LP₁₁ mode cut-off)

Practical (2000): La Silla 3.6m team found 5% coupling at best without AO

Practical (2015): Subaru 8m team now achieving 60+% with AO + new PIAA

Direct coupling of 8m telescope to SMF

Required two breakthroughs: (a) AO, 2000 DM actuators

Jovanovic et al (2015)

THE UNIVERSITY OF

(b) phase-induced amplitude apodization

Phase Induced Amplitude Apodization

Big telescopes have central holes, but can now fill in with PIAA lens pair → Gaussian beam

Adaptive optics working principle (courtesy of Sterne und Weltraum and S. Hippler).

Adaptive opt

Genzel et al 2003; Ghez et al 2005; Ghez et al 2008; Genzel et al 2010

Adaptive optics: SCAO vs MCAO

THE UNIVERSITY OF SYDNEY

Adaptive optics: SCAO vs MCAO

2100 nm; ESO Very Large Telescope, Chile

Marcis et al 2008

McGregor et al 2004; Neichel et al 2014

Instruments without optics: an integrated photonic spectrograph

J. Bland-Hawthorn^a, A. Horton 2006 Anglo-Australian Observatory, 167 Vimiera Rd, Eastwood, NSW 2122, Australia

A perfect DL telescope can image onto one or more SMF. This can feed a spectrograph in its minimum (DL) configuration. But can telescopes + AO can ever achieve this ideal (90⁺ %) ?

Why are spectrographs so far removed from the ideal?

Medium resolution spectrograph has pupil $D_P \sim 30$ mm, say

Consider a grating with $\rho = 1000$ lines mm⁻¹

Set m = 1 (tilt or prism) for straight through design

 $R = m N = m D_P \rho = 30,000$

...you'd be lucky to get R=3000at m=1 on existing instruments !

A major goal of astrophotonics is to break this impasse, i.e. collapse an instrument to its DL configuration.

THE UNIVERSITY OF SYDNEY

1st photonic (DL) spectrograph with broadband spectrum

Cvetojevic et al 2009, 2011; Betters et al 2014; Jovanovic et al 2014

On-sky: Results

H-band J-H gap J-band

Metadata: Date: 9th April 2015 Seeing: <0.5" Strehl: 60% Estimated coupling efficiency: 40-60% Star: HD135153 Spectral type: F1 Spectrograph throughput: 40% in H-band

Best AO systems are <u>not</u> perfectly stable yet

So what if we fall short with AO?

Coupling light into few mode fibres, Horton & JBH (2007), Optics Express

THE UNIVERSITY OF SYDNEY

The photonic lantern: Efficient coupling to SMF Single mode action in MMF

THE UNIVERSITY OF SYDNEY

Example: complex filtering in an MMF

• Complex aperiodic FBGs to remove unwanted frequencies in MMFs

Printing FBGs into Multi Core Fibres

Lindley et al 2014, 2015

THE UNIVERSITY OF SYDNEY

Thomson et al 2011, 2012; Norris et al 2014; MacLachlan et al 2015

LASER & PHOTONICS REVIEWS

Laser Photonics Rev. 8, No. 1, L1-L5 (2014) / DOI 10.1002/lpor.201300129

Abstract The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mmlong gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.

Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

Izabela Spaleniak^{1,2,*}, Simon Gross^{1,3}, Nemanja Jovanovic⁴, Robert J. Williams¹, Jon S. Lawrence^{1,2,5}, Michael J. Ireland^{1,2,5}, and Michael J. Withford^{1,2,3}

Many new integrated functions: e.g. laser combs

Chu et al 2012; Schwab et al 2014

Astrophotonics groups are developing many other photonic technologies

Screen

Linear

detetector

A future dominated by DL instruments & telescopes

140 м

20 M

Australian Astronomical Observatory (AAO)

World leaders in autonomous robotic fibre positioning

Target many objects simultaneously

Hubble shows us galaxies were smaller in the past.

What went before?

	1. A. A.																	
Periodic Table of the Elements													VIIIA					
1	H Hydrogen 1:00704	11A 2		VIA 16	Group not:	ilion	Metals	1	ransition Elem	ents 🛃	Radioactiv	e	ША 13	IVA 14	VA 15	VIA 16	VIIA 17	2 Heium 4.00206
2	Li	Be	2	0.	} Number of in each sh _Symbol	electrons	Nonmetal	ils 🔲 L	anthanide Seri	ies 🖸	Synthetic		B	C	N	0	F	Ne
	Lithium 6.941	Beryllium 9.012182	Ť	Oxygen-	Name Atomic M:	ass [Noble Ga	ises 🗖 A	Actinide Series	()	Atomic wei most stable	ght of the sisotope	Bortin 10.811	Carbon 12.011	Hitrogen 14.00674	Oxygen 15.9994	Flaorize 18.9984	Nean 20.1797
3	Na	Mg	Ľ		Period								A	Si	P	S	CI	Ari
	Scdiam 22.98977	24.3050	IIIB 3	IVB 4	VB 5	VIB 6	VIIB 7	8		10	18 11	118 12	26.981539	28.0855	30.9736	32.066	35.4527	Argan 39.948
4	K Polassium 39.0983	Calsium 48.078	Scandium 44.9559	Titenium 47.867	V 12 Vinadium 50.9415	Ctromium 51.9961	Manganese 54.93085	Fe Iran 55.845	Cotali 58.93328	Ni	Cu Copper 63.546	Zn Zite 85.39	Galliem 69.723	Germanium 72.61	As Arsenic 74.92159	Selenium 78.96	Br Beansine 79.584	Kr st
5	87 Rb Rubidium 85.4678	Strontium 87.62	Y Yttriam 88.90585	Zircenium 91.224	Nb 1 Nisbium 92.90638	Malybierum 95.94	Tochnellam ² (98)	Ruthesiam 101.07	Rhedian 102.9055	Pallediam 106.42	Ag silver 107.8582	Cd 3 Gadmiern 112.411	In Indian 114.818	50 Sn 118.718	Sh Antimerry 121.760	Tellurian 127.60	Indine 125.90447	Xe 1 Xeston 131.29
6	55 CS 6esturi 132.9054	56 Ba Bariam 137.327	57-71 La-Lu	Hf 1 Hsletum 12 178.49	Ta 12 Tantalum 12 180.9479	W Tungsten 183.84	Re 10 10 10 10 10 10 10 10 10 10 10 10 10	05 05 05 05 05 05 05 05 05 05 05 05 05 0	Ir Ir Istidium 192.217	Platinum "	Au Beld 196.9665	Hg Morcury 200.59	Thallium 284.3833	Pb Lesd 207.2	Bi Bismuth 208.980	Polseiare (209)	Astatise (210)	Radon H (222)
7	Fratelum (223)	Radtern 225.025	89-103 Ac-Lr	Unq Unrilgendinn (261)		Unh Unh (263)	Umilseption (252)	Uneilection in (265)	Une Une (266)	Unuterilian No. 2	Uninentian (272)	2						
			6	Lanthemern 2 138.9055	Cerium 148.115	59 Pr 4 148.90765	60 Nd 11 Noselymiam 2 144.24	Pm ¹ / ₁ rromethium ² / ₂ (145)	Samerium 1 150.36	63 Europium 1 151.965	Gd Badditrium 1 157.25	65 Tb # Terbian 153.92534	68 Dy 28 Dyspeasium 22 162.50	Ho 104.9303	Err 2017	69 Tm 1 Theliam 1 168.93421	70 Yb 173.84	Lutetism 22 174.967
			L→7	Actinium	Therium B	Pa	Uranium 1	Np Neptanium	Platoniam 34	Americium 1	Cm	Bk Berkellum	Cf Catillamian	Es i	Fermian T	Mendelevisor	No Hobellam R	Lawrenciam

The next generation of huge telescopes will achieve <u>direct</u> <u>coupling</u> into single-mode waveguides, or close to it.

The \$100M investment in advanced AO is paying off.

Astrophotonic instrumentation will dominate the future.

