Stochastic nature of feedback processes in galaxies

Joss Bland-Hawthorn (U. Sydney)

Gamma-ray emissions

X-ray emissions

Milky Way

50,000 light-years

Sun

Astro-ph/1309.5455 – posted at 10am today

THE ASTROPHYSICAL JOURNAL, 776:1 (15pp), 2013 ??? © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/776/1/1

FOSSIL IMPRINT OF A POWERFUL FLARE AT THE GALACTIC CENTER ALONG THE MAGELLANIC STREAM

J. BLAND-HAWTHORN¹, PHILIP R. MALONEY², RALPH S. SUTHERLAND³, AND G. J. MADSEN⁴

Question: Sgr A^{\star} is 10⁸ below Eddington today. When was it last a full blown Seyfert?

Outline:

Energetic feedback (2003-13): starburst or AGN? Fermi bubbles mystery solved (2011-13) Magellanic Stream mystery solved (1996-2013) New insight on AGN feedback (2011-13) Better prescription for galaxy models

The Galaxy's bipolar wind seen on 10 kpc scales...AGN or starburst driven?JBH & Cohen (2003)

Giant Gamma-Ray Bubbles at the Galactic Centre Su+ 2010

FIG. 2.— All-sky residual maps after subtracting the *Fermi* diffuse Galactic model from the LAT 1.6 year maps in 4 energy bins (see §3.1.1). Two bubble structures extending to $b \pm 50^{\circ}$ appear above and below the GC, symmetric about the Galactic plane.

Radio counterpart

30 & 44 GHz (red and yellow) vs gamma-rays (blue)

(Planck collaboration, 2012)

Fermi BUBBLES CREATED WITH AGN JETS

Guo & Mathews 2012

FIG. 2.— Central slices $(16 \times 15 \text{ kpc})$ of CR energy density (top panels) and thermal electron number density (bottom panels) in logarithmic scale in run A1 at t = 1 Myr (left panels), and $t = t_{\text{Fermi}} = 2.06$ Myr (right panels). Horizontal and vertical axes refer to R and z respectively, labeled in kpc. The dotted region in each panel approximately encloses the observed north *Fermi* bubble. The propagation of the AGN jet, active for only $t_{\text{jet}} = 0.3$ Myr, produces a CR bubble at t = 2.06 Myr approximately matching the observed *Fermi* bubble. The dashed lines in bottom panels trace the outer edge of the *ROSAT* X-ray shell feature in the northeastern direction (which is most prominent), and is roughly spatially coincident with the jet-induced shock at t = 2.06 Myr.

Fig. 1.—Radio galaxy 0313-192 and its environment in a color composite produced from the ACS images in F555W and F814W. The red overlay shows the VLA 20 cm structure, encompassing a wide field of $82'' \times 96''$ to show most of the radio source. Multiple arrays have been combined to retain higher resolution in the kiloparsec-scale jet. This image is available as STScI-PRC03-04. North is about 20° counterclockwise from the top. The less inclined spiral has a substantially different redshift and, while likely part of Abell 428, does not form a bound interacting system with 0313-192.

30 or more nearby Seyfert examples:

0313-192 NGC 1068 NGC 2992 NGC 3079 NGC 3801 NGC 5506 NGC 6764 Circinus Markarian 6 M51

The mystery of the Magellanic Stream's ionization

Factor ~ 2 for poorly known UV sources

Galaxy Zoo has discovered dramatic ionization cones on scales ~ 10 kpc

New: Kreimeyer & Veilleux (2013) see ionization cone out to r ~ 90 kpc

Seyfert NGC 7213 ionizes gas stream at r ~ 30 kpc

The Stream's ionization powered by Seyfert activity?

Photoionizing flash followed by fading recombination emission

Recombination is faster than cooling

Time-dependent ionization using new MIV code

Timescales

Consider a Seyfert flare that took place at $t = T_{o}$ for a burst time T_{R}

We must consider other timescales:

Double-crossing time T_{c} Photoionization time $T_P \sim 4x10^3 \varphi_6$ yr Recombination time $T_R \sim 8 \times 10^4 / n_H$ yr

- ~ 2x10⁵ (D/55 kpc) yr

TABLE 1

MAPPINGS IV TIME-DEPENDENT IONISATION CALCULATIONS^a

(a) 55 kpc

$n_H (\mathrm{cm}^{-3})$	$d_m(pc)$	$\mathcal{E}_m(cgs)$	$\mathcal{E}_m(\mathbf{mR})$	$T_R(yr)$	$T_o(yr)$
1.0	9	4.8e-18	844	1.3e5	4.9e5
0.3	63	4.8e-18	848	4.3e5	7.9e5
0.1	404	4.8e-18	849	1.4e6	1.8e6
0.08	1423	4.8e-18	852	2.5e6	2.9e6
0.03	3461	4.9e-18	858	4.7e6	5.1e6
		(b) 100 kpc			
n_H (cm ⁻³)	$d_m(pc)$	$\mathcal{E}_m(cgs)$	$\mathcal{E}_m(\mathbf{mR})$	$T_R(yr)$	$T_o(yr)$
1.0	4	1.4e-18	251	3.0e4	7.5e5
0.3	31	1.5e-18	258	1.0e5	8.2e5
0.1	178	1.5e-18	258	3.2e5	1.0e6
0.03	1245	1 50 19	257	1 206	1.006
0.00	1545	1.56-10	251	1.200	1.960

Best estimate is Seyfert flash at $T_o \sim 1-3$ Myr ago

Final slide of Guo & Mathews (2013 Kavli talk)

Summary: The Fermi Bubbles

- The Fermi bubbles can be created with a recent AGN jet activity about 1-3 Myr ago, which lasted for ~ 0.1 – 0.5 Myr.
- The estimated energy of the event is ~ 10⁵⁵ 10⁵⁷ ergs, depending on the gas densities in the Galactic halo.
- The jet activity produces a strong shock, which heats and compresses the hot halo gas, potentially explaining the ROSAT X-ray features
- Many physical processes play important roles in this event, including magnetic draping, shear viscosity, cosmic-ray diffusion

Figure 6. Eddington ratio as a function of time, for three different time intervals in the A2 simulation.

Novak, Ostriker & Ciotti (2011, 2012):

SMBH growth and accretion within CDM.

Complex activity on all temporal scales.

50 dB variation in 1 Myr largest seen in these simulations...

Final thoughts

Nuclear activity allows galaxies to be observed to $z\sim7$. The Galactic Centre provides us with a front-row seat.

The imprint of full-blown Seyfert activity is visible across the Stream.

Excellent match to the Fermi bubbles model: **alignment – energetics – timescale**.

SMBH feedback can be very strong but difficult to detect beyond the LG.

Hard to explain 80 dB variation in 2 Myr without MHD (Balbus).

We can expect great advances in GC research in the near future.