Overview of IEC Research at Kyoto Univ.

IEC2011 Dec. 7-8, 2011 @ Sydney, AUS

<u>Kai Masuda</u>, T. Kajiwara, Y. Yamagaki, G. Hashimoto and Y. Kamiya

Inst. Advanced Energy, Kyoto Univ.

Highlights from KU IEC Program

RS-MIS driven IEC

- Runs at extremely low pressure of 5 mPa
- Upgrade plan: 1 mA (achieved) > 100 mA (target)
- Neutron/X-ray two-beam radiography by use of a glow-discharge driven IEC
- Design of a pulsed high-peak IEC NG for HEU interrogation
- Multistage HV feedthrough scheme that can
 - modify spherical symmetry of E-field, and
 - prevent arcing and enable high-voltage operation.

Towards the BM-BM Fusion Regime

- Beam-gas and/or beam-electrode contributions are predominant in any IEC device developed so far; either glow- or ion-source-driven IEC.
- σ_{fusion} / σ_{cx} will limit NPR / Power, so long as we stay in the beam-gas regime.
- Accelerator-based neutron generator is a much better system than IEC for the beam-electrode regime.

Requirements for the BM-BM regime:

High ion density, as high as gas density, in a small volume (converged core).

- high current-to-pressure ratio, I / P
- significant ion recirculation

Ring-Shaped Magnetron Ion Source Driven IEC

RS-MIS Driven IEC: Features

- Extremely low pressure operation:
 - 🗖 5 mPa, 1 mA
- Birthplace of ions preferable for recirculation;
 - at negative potential,
 - normal to the HV feedthrough.
- Planar focus of ions.

5

inzo-scale prototype... 15 years ago

Degree of ionization in the discharge gives $n_{ion}/n_{neutral}$ in the source region.

The planar focus of ions enhances $n_{ion}/n_{neutral}$ at the converged core.

RS-MIS Driven IEC: Review

- NPR turned out to increase as the pressure decreases, for low pressure below 10 mPa.
- NPR showed nonlinear dependence on current.

6

J. Kipritidis, K. Masuda et al., Plasma Phys. Control. Fusion 53 (2011) 045006.

RS-MIS Driven IEC: Review

- NPR turned out to increase as the pressure decreases, for low pressure below 10 mPa.
- NPR showed nonlinear dependence on current
- These phenomena are seen only temporary...

(Feb. 2009)	NPR $\propto 1^{\wedge}$	1.7 @ 60 kV, 5 mPa
(July 2009)		1.0 @ 60 kV, 5 mPa
(12 Aug 2009)		1.7 @ 80 kV, 5 mPa
(14 Aug 2009)		1.4 @ 80 kV, 5 mPa
(16 Aug 2009)		1.0 @ 80 kV, 5 mPa

Simulation suggested that

- confinement time of ions is dominated by BM-Grid collisions rather than BM-Gas charge exchange,
- BM-BM NPR is 4 orders of magnitude lower than BM-Gas at 1 mA and 5 mPa,
- Time variation of absorbed D₂ surface density on the cathode grid provides a qualitative explanation.

7

K. Masuda, T. Nakagawa, J. Kipritidis et al., *Plasma Phys. Control. Fusion* 52 (2010) 095010. J. Kipritidis, K. Masuda et al., *Plasma Phys. Control. Fusion* 53 (2011) 045006.

RS-MIS Driven IEC: Efforts in Progress

The experimental observations of NPR dependence on *P* and *I* are still not fully explained.

- Development of a collimated proton measurement system is in progress.
- Upgrade of the RS-MIS for high-current operation is planned.

1 mA 📥 100 mA @ 5mPa

RS-MIS Driven IEC: New Efforts in Progress

The experimental observations of NPR dependence on *P* and *I* are still not fully explained.

- Development of a collimated proton measurement system is in progress.
- Upgrade of the RS-MIS for high-current operation is planned.
 Presented by T. Kajirwara

1 mA 📫 100 mA @ 5mPa

tomorrow morning

Improvement of ion confinement time τ by modification of the E-field symmetry is also planned by use of a multistage HV feedthrough.

- BM-BM nonlinear dependence on τ
- BM-Gas linear dependence on τ
- BM-Gird independent of τ

Presented by Y. Yamagaki

9

tomorrow morning

IEC25: A glow-discharge driven compact IEC

Developed originally for the LM-detection project.

Provides stable neutron output of 5×10⁷ sec⁻¹.

Anode water-cooling enables continuous 8-hr operation.

NPR stabilized by FB control.

Easy to operate.

A student can run it after 1day instruction.

IEC25: Application to Radiography

IEC as a radiography source:

- too low NPR to use a good collimator,
 - cf. fission reactor
- volume source,

.

- cf. accelerator-based NG
- but still applicable for thin objects.
- an advantage is that...

Proposal of Two-Beam Radiography by IEC

- Two-beam radiography is sensitive to material composition through "R-value".
- The R-value is given by the ratio of transmittances of the two beams, which is independent of the material density and the object thickness.
- The R-vaule is much sensitive for a neutron/Xray system than a twocolor X-ray system.

HEU Interrogation R&D Project

Advantages of DD over DT

- No need of tritium handling
 - easy operation, easy maintenance
 - safe even in case of attack by terrorist
- Lower energy of neutrons
 - we need thermal neutrons to induce fission
 - less shielding load
 - less difficulty in separating out from fission neutrons

14

IEC & PS for the SNM Interrogation System

Neutron Generator

- DD, not DT
- pulsed peak NPR > 10¹¹ sec⁻¹
- ø600 mm spherical IEC.
- 200 kV, 5Apeak glow-discharge
- Ti-coated electrodes
- - to prevent arcing
 - dc HV test is being made Presented by Y. Yamagaki

tomorrow morning

- Pulsed High-Voltage Power Supply
 - 200 kV, 5A
 - 1 100 µsec variable, 50 pps max.
 - everything in a monocoque oil tank
 - no EM-noise emission

IEC employing a multistage feedthrough

2.5 m

5

IEC Employing a Multistage HV Feedthrough The addition of intermediately biased electrode prevents arcing. 0 **2V** 0 **V** 2V E=V/d E=V/d arcing! no arcing d **2**d C

because the threshold surface E-field depends on d. empirical law: $E_{sh} \propto d^{-3/10}$

IEC Employing a Multistage HV Feedthrough

- The addition of intermediately biased electrode prevents arcing.
- E-field distribution can be modified by changing the length L of the intermediately biased electrode.

Summary

RS-MIS IEC for BM-BM study

Glow IECs for applications

- **IEC25**: DD dc 5 x 10^7 sec⁻¹ (achieved)
- \square IEC60: DD pulsed 10¹¹ sec⁻¹ (target)

Applications:

- SNM interrogation
- neutron/X-ray two-beam radiography

Acknowledgements

Work supported by;

Grant-in-Aid for Sci. Res. - Young Sci. (A), MEXT (Grant No. 22686011)

□ Special Coordination Funds for Promoting Sci. Tech., JST (Grant No. 066)

Zero-Emission Energy Research Program, Inst. Advanced Energy, Kyoto Univ (2011/A-16)