A “Polywell” p+11B Power Reactor
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Aneutronic fusion is the holy grail of fusion power research. A new method of operating Polywell was developed
which maintains a non-Maxwellian plasma energy distribution. The method extracts down-scattered electrons and
replaces them with electrons of a unique higher energy. The confined electrons create a stable electrostatic
potential well which accelerates and confines ions at the optimum fusion energy, shown in the graph below.
Particle-in-cell(PI1C) simulations proceeded in two steps; 1) operational parameters were varied to maximize power
balance(Q) in a small-scale steady-state reactor; and 2) the small scale simulation results were scaled up to
predict how big a reactor would need to be to generate net power. Q was simulated as the ratio of fusion-power-
output to drive-power-input. Fusion-power was computed from simulated ion density and ion velocity. Power-input
was simulated as the power required to balance non-fusing ion losses. The predicted break-even reactor size was
13m diameter. Bremsstrahlung losses were also simulated and found manageable.
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Fig. 2 - “Polywell” Patent Pending
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Fig. 3 - PIC Simulation Flowchart
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Figure 2-3a A typical cycle, one time step, in a particle simulation program. The particles are
numbered i=1,2, ..., NP; the grid indices are j, which become vectors in 2 and 3 dimen-
sions. “ | ‘

The Figure(above) and caption were scanned from the textbook, Birdsall and Langdon,
“Plasma Physics via Computer Simulation”, McGraw Hill, New York, 1985, pg. 11.



Fig. 4 - Electrons' 2D Positions
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Fig. 5 - Confining Electrostatic Potential
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Fig 6 - Rider's 2005 Analysis of IEC

Required Power to Maintain Nonequilibrium Plasma
(Qi) accelerate slow particles decelerate fast particles
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Idealized SYStem for ReC"'Cl-llatmg Power FIG. 2. A schematic diagram showing how to calculate the minimum recir-
to Maintain a Nonequilibrium Plasma culating power required to maintain a given non-Maxwellian isotropic ve-
locity distribution shape. This particular example shows the recirculating
* Woew = Quoes power needed to sustain a distribution qualitatively similar to that in Fig.

1(b}, but this general method may be extended to any isotropic but otherwise
arbitrary velocity distribution, as described in Eq. (14).

~ 5-50 for most interesting cases

Non-equilibrium plasma
* Entropy generation rate S
* Thermodynamic temperature T, ~ keV * PrecrdPus
Q=T.S e W * Direct electric converters, resonant heating, etc.
eff rasire would lose too much power during recirculation

* Need novel approaches (e.g., nonlinear wave-

engine \

(Carnot) e particle interactions) that
— Are >95% efficient
Quoss = Tiow S = (Tiow/Tett) Precire — Recirculate the power inside the plasma without h
Low-temperature reservoir running P, >>P;,, through external hardware
* Temperature T,,,, ~ eV ~ Are resistant to instabilities
THR-16 T. H. Rider, Phys. Plasmas 4, 1039 (1997} and Ph.D.
4/1/05 thesis, MIT (1995)—don’t overlook Appendix E

Slide-16 from Rider's 2005 talk: http://www.Iongwood.edu/assets/chemphys/FusionRoute.pdf



Fig. 7 - Scraping Down-Scattered e's
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Fig. 8 - lon Loss Power Calculation

« P;, = proton energy-loss-rate + boron energy-loss-rate (through corner cusps)
= (# slabs/cube) (# cusps/slab) {>[Particle Loss-energy)][Particle loss-rate]}
= (L/Ap) (4) {[*2(956MeV)(8e6)?/c?][Y2(114-110)(9e10)/(11e-65)]

+[Y2(11)(931MeV)(5.4e6)%/c?][2(114-240)(1.2e10)]/[(11e-65)]}
- (30)(4){[(340keV)(1.6e16/+[(17O <) (2,2815/5)}-=65e23 + 4.5e23
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Fig. 9 - Power Balance Q

. Simulated (R = 35cm) power balance: Q(R) = Py, / P;, where:

e Pis = Nyny<o;v>L° E;eV/s [6]

P
- np = proton 3D density =N, /Ay =1.1e17/m3
- N, = boron 3D density = n, / Z (Proton and boron partial pressures are made equal.)

- Z = boron charge state from ion gun =5
- N, =simulated (2D) proton density = 1.1e15/m2 (Fig. 10)

_ A\p = Debye length = 7.43e2 E_,V/2 n,~1/2 cm = 0.01m (Fig.10 & Formulary pg. 28 [7])
- E. = maximum electron energy inside well = 400keV (Fig. 10)
- N = 2n, (Plasma quasi-neutrality is an inherent property of the simulation.)

- <> = fusion x.c. times c.m. velocity = 8e-29m2 x 1e7m/s = 8e-22m3/s (Title page)
- L =ion plasma cube dimension in meters = 0.3m (from previous slide)
_ E; = fusing ion pair energy release in eV = 8.7 MeV (Formulary pg. 44 [7])

e Pis = (1.1e17) (2.2e16) (8e-22) (0.3%) (8.7e6) eV/s = 4.5e17 eVI/s
« Q(R=35cm) =Py, / P;, =4.5el7/1.1e24 = 4.1e-7 (P;, from Fig. 8)

[6] Glasstone and Lovberg, “Controlled Thermonuclear Reactions”, van Nostrand, 1960, eq. 2.10
[7] NRL Plasma Formulary, http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY _11.pdf



Fig. 10 - Diagnostics Determining Py,q
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Fig. 11 - Reactor Break-Even Radius
« Bussard's Scaling Formula: Q,/Q, = (R/R,)°> [8]
« Break-Even Formula: Q(R=35cm)/Q(R,) = (R/R})°

« Q(Rp =1
« Solving for Break-Even Radius: R, = R/QL5

« R, =0.35m/(4.1e-7)02 = 6.6m = smaller than ITER
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Fig. 12 - Bremsstrahlung Power Loss

P, =1.69e-32 n, T % [np+22nb] L3 W [Formulary p.58]
P,=1.1e-13 n2 T,2[0.5 + (25)(0.1)] L3 eV/s

« n, = electron density in cm-3 = 2.2e11/cm?3 (Fig. 9)

T, = electron kinetic energy in eV = 80keV (Fig 13)

e L = electron core edge dimension in cm = 30cm (Fig. 13)

P,=1.1e-13 (2.2e11)? (8e4)*:(3.0] (30)3 eVI/s
P,=1.3el7 eV/s
P,= 30% P;, (Fig. 9)

Bremsstrahlung losses = 1/3 fusion output power



Fig. 13 - Diagnostics Determining Py,
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Fig. 14 - How to Reduce P, Losses

P, ~Tg” [1+ 25 (ny/ny) |
To reduce P, the reactor design can change:
 Reducing T, to 1% E, would reduce P, by 4.5X. [4]

» Boron fraction ny/n, 20 -> 10% would reduce P, by ~2X.
Reducing T, might increase reactor size (R,).

* Not yet tested in simulation.
Radiation might be reduced to 5% of fusion power.



Fig. 15 - p + 11B Power; Conclusions

 New method efficiently recycles electron energy.
« Simulation predicts break-even R, = 6.6m

« Additional design issues still need attention:

* Electron power drain must be reduced.
* Bremsstrahlung power drain must be reduced.

« A 3D simulation is needed for more realistic P,

* The future of aneutronic fusion power Is bright.



