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ABSTRACT
In this paper we present a clustering analysis of quasi-stellar objects (QSOs) as a function of
luminosity over the redshift range z = 0.3–2.9. We use a sample of 10 566 QSOs taken from the
preliminary data release catalogue of the 2dF QSO Redshift Survey (2QZ). We analyse QSO
clustering as a function of apparent magnitude. The strong luminosity evolution of QSOs
means that this is approximately equivalent to analysing the data as a function of absolute
magnitude relative to M∗ over the redshift range that the 2QZ probes. Over the relatively
narrow range in apparent magnitude of the 2QZ we find no significant (>2σ ) variation in the
strength of clustering, however, there is marginal evidence for QSOs with brighter apparent
magnitudes having a stronger clustering amplitude. QSOs with 18.25 < bJ � 19.80 show a
correlation scalelength s0 = 5.50 ± 0.79h−1 Mpc in an Einstein–de Sitter (EdS) universe and
s0 = 8.37 ± 1.17h−1 Mpc in a universe with �0 = 0.3 and λ0 = 0.7 (	), while the best-fitting
values for the full magnitude interval (18.25 < bJ � 20.85) over the same spatial scales are
s0 = 4.29+0.30

−0.29h−1 Mpc (EdS) and s0 = 6.35+0.45
−0.44h−1 Mpc (	). We can therefore determine that

the bias of the brightest subsample is a factor 1.22 ± 0.15 (EdS) or 1.24 ± 0.15 (	) larger than
that of the full data set. An increase in clustering with luminosity, if confirmed, would be in
qualitative agreement with models in which the luminosity of a QSO is correlated to the mass
of the dark halo in which it resides, implying that the mass of the host plays at least some part
in determining the formation of a QSO and evolution. These models predict that the clustering
in brighter QSO data sets, such as the Sloan Digital Sky Survey QSO sample or the bright
extension of the 2QZ, should show a higher clustering amplitude than the 2QZ.

Key words: galaxies: clusters: general – quasars: general – cosmology: observations –
large-scale structure of Universe.

1 I N T RO D U C T I O N

The currently preferred models of structure formation based on hi-
erarchical growth of structure predict that the level of clustering of
a population is dependent on the mass of the dark halo in which the
object resides. Thus clusters of galaxies should cluster much more
strongly that galaxies do, which we observe to be the case. Anal-
ysis of galaxy surveys have also shown that more luminous (and
therefore on average more massive) galaxies have stronger clus-
tering than faint galaxies (Giavalisco & Dickinson 2001; Loveday
et al. 1995).

�E-mail: scroom@aaoepp.aao.gov.au

The luminosity of quasi-stellar objects (QSOs) appears to be
(weakly) correlated with host galaxy luminosity, at least for low-
redshift QSOs (e.g. Schade, Boyle & Letawsky 2000). More lu-
minous QSOs reside in brighter host galaxies. It is then natural
to suppose that brighter QSOs should be found in more massive
galaxies, assuming that luminosity and mass are correlated at least
to some extent. Further circumstantial support for this argument
is given by the correlation between the estimates of central black
hole mass and the spheroidal component of the galaxies (Magorrian
et al. 1998). We would then expect luminous QSOs to cluster more
strongly than faint QSOs.

Until recently it was impossible to determine QSO clustering as
a function of luminosity. The sparse nature of QSO surveys and
the small numbers in homogeneous, complete samples meant that
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QSO clustering was only detectable at the ∼4σ level (Iovino &
Shaver 1988; Andreani & Cristiani 1992; Shanks & Boyle 1994;
Croom & Shanks 1996; La Franca, Andreani & Cristiani 1998).
However, the 2dF QSO Redshift Survey (2QZ) has allowed a dra-
matic improvement to be made in the measurement of QSO cluster-
ing. Using over 10 000 QSOs from the 2QZ, Croom et al. (2001a)
(henceforth Paper II) have made the first accurate (to ∼10 per cent)
measurement of QSO clustering. They find that QSO clustering av-
eraged over the redshift range 0.3 � z � 2.9 is very similar to that
measured in redshift surveys of local (z ∼ 0.05) galaxies. When fit-
ting a standard power law of the form ξQ(s) = (s/s0)−γ Croom
et al. find s0 = 3.99+0.28

−0.34h−1 Mpc and γ = 1.58+0.10
−0.09 for an Einstein–

de Sitter Universe (henceforth denoted by EdS). For a cosmology
with �0 = 0.3 and λ0 = 0.7 (henceforth denoted by 	) they find
s0 = 5.69+0.42

−0.50h−1 Mpc and γ = 1.56+0.10
−0.09. When investigated as a

function of redshift the clustering of QSOs was found to be con-
stant over the whole redshift range considered.

The nature of any flux-limited sample means that the most distant
objects in the data set will on average have the highest intrinsic lu-
minosity. There is then the reasonable concern that a comparison of
QSO or galaxy clustering at different redshifts in any flux-limited
sample is actually measuring the properties of a different popula-
tion of objects at each redshift. In the case of QSOs, their extreme
evolution in luminosity [∝(1 + z)3] out to z ∼ 2 (Boyle et al. 2000,
henceforth Paper I) means that at each redshift we are at least study-
ing the same part of the QSO luminosity function (LF).

In this paper we will make the first attempt to determine the
strength of QSO clustering as a function of luminosity. In Section 2
we describe the data and analysis used. In Section 3 we present our
clustering results from the 2QZ, these are discussed in Section 4.

2 DATA A N D A NA LY S I S

2.1 The QSO sample

For the analysis in this paper we have used the first public release
catalogue of the 2QZ, the 10k catalogue (Croom et al. 2001b, hence-
forth Paper V). We only use QSOs with high-quality (quality Class 1;
see Paper V) identifications of which there are 10 689 in the 10k
catalogue (note that the number of QSOs used in the analysis of
Paper II was 10 681, eight further QSOs were added to the 10k
sample prior to its final publication). This 10k catalogue contains
the most spectroscopically complete fields observed prior to 2000
November and is now publicly available to the astronomical
community at http://www.2dfquasar.org. The sample contains
10 566 QSOs in the redshift range 0.3 < z � 2.9, which will be in-
cluded in our analysis below.

The magnitude range of the 2QZ is 18.25 < bJ � 20.85. This is
a fairly narrow range, covering just over an order of magnitude
in flux. However, it does span the important regime in which the
QSO luminosity function flattens towards fainter magnitudes. The
distribution of QSO absolute magnitudes versus redshift is shown in
Fig. 1 for the EdS cosmology. We convert from apparent to absolute
luminosity using the k-correction of Cristiani & Vio (1990) and
assume a Hubble constant of H0 = 50 km s−1 Mpc−1 (for luminosity
determinations only). We note that in our clustering analysis we
include the factor h where H0 = 100h−1 km s−1 Mpc−1. The objects
at high redshift are on average much more luminous, as we would
expect in a flux-limited sample. Also, as the number of QSOs drops
dramatically at brighter apparent luminosities there is only a small
amount of overlap in intrinsic luminosity between QSO samples
selected at widely differing redshifts.

Figure 1. The redshift versus absolute magnitude distribution of 2QZ QSOs
used in our analysis for an EdS cosmology. The solid line shows the value of
M∗ as a function of redshift, as derived from the best-fitting LF model (see
text). The model fit is calculated between z = 0.3 and 2.3, beyond z = 2.3
the model is an extrapolation (dashed line).

The QSO LF is well described by a double power law. The char-
acteristic absolute magnitude of the break is denoted by M∗, which
is found to evolve strongly with redshift. Using the power-law evo-
lution model of Paper I, in which M∗(z) = M∗(0)−2.5(k1z + k2z2),
Paper V derived the best-fitting parameters for the 2QZ 10k cata-
logue and Large Bright Quasar Survey (Hewett, Foltz & Chaffee
1995) combined in an EdS universe. The parameters found were

∗ = 0.2 × 10−5 Mpc−3 mag−1, α = 3.28, β = 1.08, M∗

b = −21.45,
k1 = 1.41 and k2 = −0.29. M∗ as a function of redshift for this model
is plotted in Fig. 1. The fit to the LF is only carried out below
z = 2.3, above that redshift the dashed line shows the extrapola-
tion of the best-fitting model, which is approximately consistent
with the density of high-redshift QSOs (3.6 � z � 5) found in the
Sloan Digital Sky Survey (Fan et al. 2001). We have also fitted
the same model to the 2QZ and LBQS assuming a 	 cosmology.
In this case we find: 
∗ = 0.46 × 10−6 Mpc−3 mag−1, α = 3.42,
β = 1.35, Mb

∗ = − 22.54, k1 = 1.34 and k2 = −0.26. This fit is in
the range of acceptability specified in Paper I (PKS > 0.01) with a
two-dimensional Kolmogorov–Smirnov (KS) probability of 0.02. It
is worth noting that the parameters of these fits are strongly corre-
lated, hence the use of any single parameter is to be discouraged. As
this is the case we make comparisons between QSO samples of dif-
ferent apparent magnitudes, and do not split the QSOs in luminosity
relative to M∗.

The division of QSOs on the basis of their apparent magnitude
has several advantages over using absolute luminosities. First, ap-
parent magnitude is a measured, not derived, quantity and is thus
not dependent on the cosmological model used. It should be easy to
produce flux-limited samples from any model of QSO formation,
allowing direct comparison between data and models. Secondly, be-
cause M∗ is at approximately the same apparent magnitude at every
redshift, an apparent magnitude cut selects the same part of the QSO
LF at each redshift.

Measuring the clustering of QSOs as a function of luminosity
is challenging. In particular, at luminosities brighter that M∗ the
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Table 1. 2QZ clustering results as a function of limiting apparent magnitude. The fits assume a fixed power-law slope equal to that of
the best fit from the full data set. The listed χ2 value is a reduced χ2 for the best fit.

(�0, λ0) bJ range b̄J z̄ M̄b NQ s0 χ2 ξ̄ (20)

(1.0, 0.0) 18.25 < bJ � 19.80 19.29 1.398 −25.05 3518 5.50+0.79
−0.79 1.70 0.236 ± 0.077

(1.0, 0.0) 19.80 < bJ � 20.40 20.12 1.509 −24.43 3697 2.83+1.04
−1.24 0.93 0.171 ± 0.072

(1.0, 0.0) 20.40 < bJ � 20.85 20.63 1.552 −23.98 3351 4.01+0.95
−0.98 0.34 0.206 ± 0.082

(0.3, 0.7) 18.25 < bJ � 19.80 19.29 1.398 −25.70 3518 8.37+1.17
−1.17 0.75 0.722 ± 0.152

(0.3, 0.7) 19.80 < bJ � 20.40 20.12 1.509 −25.11 3697 4.05+1.59
−1.90 0.76 0.317 ± 0.132

(0.3, 0.7) 20.40 < bJ � 20.85 20.63 1.552 −24.67 3351 5.92+1.45
−1.49 0.83 0.358 ± 0.150

number density of QSOs falls off as a steep power law. Splitting a
sample into N redshift bins of equal numbers of QSOs increases the
error on pair counts by ∼√

N . Dividing the sample into N luminosity
bins increases errors by ∼N

√
N , as the surface density of sources is

also reduced. This is a further reason why we limit our analysis in this
paper to clustering as a function of apparent magnitude, as to carry
out a meaningful subdivision on the basis of absolute magnitude
requires a larger number of bins (owing to the redshift–luminosity
degeneracy inherent in the data set). A method to reduce the error
in the measured clustering as a function of absolute luminosity is to
cross-correlate QSOs of a particular luminosity with all other QSOs.
This method will be investigated by Loaring et al. (in preparation).

2.2 Correlation function estimates

Our correlation function estimation is carried out as described in
Paper II. For completeness we outline the procedure here. The QSO
correlation function, ξQ(s), where s is the redshift-space separation
of two QSOs, is calculated using two representative cosmologies,
the EdS and 	 models. The minimum variance estimator of Landy
& Szalay (1993) is used to derive ξQ(s). In this paper we divide the
2QZ 10k sample into three apparent magnitude intervals with ap-
proximately equal numbers of QSOs. The magnitude ranges, mean
redshifts and other parameters for these bins are listed in Table 1.
We note that the mean redshifts of the different magnitude slices
are very similar, with z̄ = 1.398, 1.509 and 1.552 for the bright,
middle and faint slices, respectively. These small differences can-
not introduce a significant variation in clustering, particularly as we
find that QSO clustering does not evolve significantly with redshift
(Paper II). The redshift distributions are shown in Fig. 2.

We correct for the current incomplete observational coverage of
the survey by using a random catalogue that exactly traces the dis-
tribution of observed QSOs on the sky, as in Paper II. The redshift
distribution of these random points is taken from a spline fit to the
QSO n(z) distribution (each magnitude slice is fitted separately).
We also normalize the number of randoms within each UKST field
in the survey to remove any possible systematic errors owing to
zero-point calibration errors.

We calculate the errors on ξQ using the Poisson estimate of

�ξQ(s) = 1 + ξ (s)√
Q Q(s)

. (1)

At small scales, �50h−1 Mpc, this estimate is accurate because
each QSO pair is independent (i.e. the QSOs are not generally part
of another pair at scales smaller than this). On scales larger than
∼50h−1 Mpc the QSO pairs become more correlated and we use
the approximation that �ξQ(s) = [1 + ξQ(s)]/

√
NQ, where NQ is

the total number of QSOs used in the analysis (Shanks & Boyle

Figure 2. The QSO redshift distribution for our three apparent magnitude
intervals, 18.25 < bJ � 19.80 (solid line), 19.80 < bJ � 20.40 (dotted line)
and 20.40 < bJ � 20.85 (dashed line).

1994; Croom & Shanks 1996), for bins in which Q Q(s) > NQ.
Note that in this paper we are concerned with analysis on small
scales ( �25h−1 Mpc), where the Poisson error estimates are appli-
cable. The

√
NQ errors are only used for displaying our correlation

functions. On very small scales the number of QSO–QSO pairs can
be �10. In this case simple root-n errors (equation 1) do not give
the correct upper and lower confidence limits for a Poisson dis-
tribution. We use the formulae of Gehrels (1986) to estimate the
Poisson confidence intervals for one-sided 84 per cent upper and
lower bounds (corresponding to 1σ for Gaussian statistics). These
errors are applied to our data for Q Q(s) < 20. By this point root-n
errors adequately describe the Poisson distribution.

3 Q S O C L U S T E R I N G A S A F U N C T I O N
O F L U M I N O S I T Y

In Fig. 3 we show the clustering of 2QZ QSOs for three different
apparent magnitude intervals (see Table 1) in an EdS universe. The
best fit to the total sample found in Paper II is shown as the dotted
line for reference. On scales <20h−1 Mpc it appears that the brighter
QSOs (Fig. 3a) show marginally higher clustering that fainter QSOs
(Figs 3b and c). In order to determine the significance of this differ-
ence we make two measurements. We first determine the integrated
correlation function, ξ̄Q, within a radius smax, which is defined as
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Figure 3. The clustering of QSOs as a function of limiting apparent magnitude in an EdS universe: (a) bright QSOs with 18.25 < bJ � 19.8, (b) intermediate
QSOs with 19.8 < bJ � 20.4 and (c) faint QSOs with 20.4 < bJ � 20.85. The solid line is the best-fitting power law in each case (assuming a slope of −1.58).
The dashed line is shown for reference and is the best-fitting power law for the full sample from Paper II. The points at ξ (s) = 0.001 with no errors denote bins
where no QSO–QSO pairs were found. These are properly taken into account in the fitting process.

ξ̄Q(smax) = 3

s3
max

∫ smax

0

ξQ(x)x2 dx . (2)

We use smax = 20h−1 Mpc as in Paper II. The results of this are
shown in Table 1. While ξ̄Q(20) is greatest for the bright sam-
ple, it is not significantly larger than the values found for fainter
QSOs.

While ξ̄Q is a robust statistic, it does not take into account the shape
of ξQ. It is possible that a stronger constraint may be obtainable by
fitting a functional form to the data. We fit a standard power law of
the form ξQ(s) = (s/s0)−γ to our results. We make the assumption
that the slope of the power law does not vary with luminosity and fix
the slope of the power law, to be the best fit from the full data set, that
is, γ = 1.58 (EdS) or γ = 1.56 (	). We use a maximum-likelihood
estimator based on the Poisson probability distribution function, so
that

L =
N∏

i=1

e−µµν

ν!
(3)

is the likelihood, where ν is the observed number of QSO–QSO
pairs, µ is the expectation value for a given model and N is the num-
ber of bins fitted. We fit the data with bins � log(r ) = 0.1, although
we note that varying the bin size by a factor of 2 makes no noticeable
difference to the resultant fit. In practice we minimize the function
S = −2 ln(L), and determine the errors from the distribution of �S,
where �S is assumed to be distributed as χ 2. This procedure does
not give us an absolute measurement of the goodness-of-fit for a
particular model. We therefore also derive a value of χ2 for each
model fit in order to confirm that it is a reasonable description of the
data. We carry out the fit on scales 0.7 < s � 20h−1 Mpc, the scales
chosen being the smallest scale containing a QSO–QSO pair and
the scale at which ξQ appears to break from a power law.

The best-fitting models are show in Fig. 3 (solid lines). As sug-
gested by the ξ̄Q measurements, the brightest sample does show
stronger clustering than the other samples, however the difference
is only marginally significant. It should also be noted that the lowest
clustering amplitude is found in the intermediate sample, although
the fit to this data set is consistent with that of the faintest sample.
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Figure 4. The clustering of QSOs as a function of limiting apparent magnitude in a 	 universe: (a) bright QSOs with 18.25 < bJ � 19.8, (b) intermediate QSOs
with 19.8 < bJ � 20.4 and (c) faint QSOs with 20.4 < bJ � 20.85. The solid line is the best-fitting power law in each case (assuming a slope of −1.56). The
dashed line is shown for reference and is the best-fitting power law for the full sample from Paper II.

In Fig. 4 we plot the clustering of QSOs in a 	 universe. This
shows the same feature as the EdS case, with the brightest QSOs
being the most strongly clustered. The measured ξ̄Q(20) values
(Table 1) also show this. The significance of the difference between
the faintest and brightest subsamples is now larger, but still only at
the ∼1.7σ level. We carry out the power-law fit (this time between
0.8 < s � 25h−1 Mpc) as above (solid lines), again finding only a
marginal difference between different magnitude intervals.

In Fig. 5 we plot the fitted values of s0 as a function of mean
apparent magnitude. In order to show a convincing trend as a func-
tion of magnitude we would like to span a much larger range in
magnitude than is possible with the current sample.

4 D I S C U S S I O N

Fitting the full data set over the same range of scales as above we
find that s0 = 4.29+0.30

−0.29h−1 Mpc (EdS) and s0 = 6.351+0.45
−0.44h−1 Mpc

(	). Thus the brightest third of QSOs has a clustering scalelength,
which is a factor of 1.28±0.20 (EdS) or 1.32±0.20 (	) larger than
that of the full sample. As b/b∗ = (s0/s∗

0 )γ /2 this then implies that

the ratio of the biases is 1.22 ± 0.15 (EdS) or 1.24 ± 0.15 (	). We
therefore find only weak evidence that bright QSOs cluster more
strongly.

We should also consider comparing the above results with other
measurements of luminosity dependent clustering. The most accu-
rate measurement of this to date is by Norberg et al. (2001) us-
ing data from the 2dF Galaxy Redshift Survey. Norberg et al. find
that the clustering of z < 0.3 galaxies is a weak function of lu-
minosity fainter than L∗

g, but a much stronger function of lumi-
nosity for galaxies brighter than L∗

g. They find that the relation
bg/b∗

g = 0.85 + 0.15Lg/L∗
g well describes the luminosity depen-

dence of galaxy bias, bg, relative to that found for L∗
g galaxies. If there

was a simple one-to-one relation between galaxy luminosity and
QSO luminosity, we would be able to make a straightforward com-
parison of QSO clustering with this relation. Unfortunately, we know
that there is only a weak correlation (with large dispersion) between
these two quantities (Schade et al. 2000). We can, however, at least
check for consistency between the galaxy and QSO clustering lumi-
nosity dependence. Under the assumption that galaxy luminosity is
more closely related to halo mass than QSO luminosity is, we would
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Figure 5. The QSO clustering scalelength, s0 as a function of mean apparent
magnitude in an EdS universe (filled circles) and a 	 universe (open circles).
The best-fitting galaxy luminosity dependence models (see Section 4) for
EdS (solid line) and 	 (dotted line) cosmologies are also shown.

expect the change in QSO clustering with luminosity to be no more
rapid than the change in galaxy clustering with luminosity. Convert-
ing the above relation for galaxy clustering into a form directly ap-
plicable in our case we find (s0/s∗

0 )γ /2 = 0.85 + 0.15 × 10−0.4(m−m∗),
where m∗ is the apparent magnitude corresponding to M∗. The value
of m∗ varies in the range 19.3–19.6 depending on the particular
best-fitting LF model used. We assume throughout that b is not a
function of scale and allow s∗

0 to be a single free parameter, while
fixing m∗ [m∗ = 19.6 (EdS) or 19.3 (	)]. The best-fitting values are
s∗

0 = 4.78 ± 0.57h−1 Mpc (EdS) or s∗
0 = 7.20 ± 0.86h−1 Mpc (	)

and lines corresponding to these are shown in Fig. 5. We find that
the above empirical model for galaxies is also consistent with the
clustering of QSOs in the 2QZ. However, this is unsurprising given
the large errors on the QSO clustering measurements.

A number of authors have attempted to model the clustering of
QSOs, based on the formalism of Press & Schechter (1974) for de-
scribing the evolution of dark matter haloes (Martini & Weinberg
2001; Haiman & Hui 2001). These make the assumption that the
luminosity of QSOs is correlated with the mass of the dark matter
halo in which they reside. Although there is reasonable evidence
that the mass of compact objects (presumably black holes) is corre-
lated with the mass of the spheroidal component of the host galaxy
(e.g. Magorrian et al. 1998), a correlation between AGN luminosity
and host luminosity and/or mass is less evident. The time-scale
of QSO activity is the main parameter that controls the ampli-
tude of clustering in these models, with time-scales of the order

of 106 yr being most consistent with the results found in Paper II
(Kauffmann & Haehnelt 2002). The main arguments are based on
the number-density of galaxies that have gone through a QSO phase.
Similar number-density arguments suggest that, as brighter QSOs
are rarer, they should cluster more strongly. Our current analysis
does not have sufficient signal-to-noise ratio to clearly demonstrate
this, and a more detailed investigation will have to await brighter
QSO surveys such as the Sloan Digital Sky Survey (Schneider et al.
2002) and the bright extension to the 2QZ being carried out with
FLAIR and the 6 degree field system on the UK Schmidt Telescope.
Further investigation is also possible using other techniques, such
as the cross-correlation of QSOs of different luminosities. This will
be investigated in the 2QZ by Loaring et al. (in preparation).
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