Prof. Steven Flammia

Quantum Mechanics

Lecture 1

Course administration; Review of Dirac notation and state space; Operators in quantum mechanics; Observables, expected values, unitary dynamics.

Administration

- * PHYS 3x34, advanced stream 3rd year Quantum Physics. * Teaching assistant: Alistair Milne, <u>amil1264@uni.sydney.edu.au</u> * Course website: <u>www.physics.usyd.edu.au/~sflammia/Courses/QM2019/</u>

- * 4 Quizzes to be held during Lectures 5, 8, 11, 14.
- * 2 Assignments, 1 Exam.
- * Marks apportioned: 0.2 Q + 0.2 A + 0.6 E.

Why quantum physics?

- * One of the most stunning intellectual achievements in human history.
- * It raises deep philosophical and conceptual questions:
 - * Determinism, causality, information, locality, even reality itself.
- * Huge range of scientific and practical applicability:
 - * Neutron stars, elementary particles, fission and fusion, magnetism, lasers, transistors, superconductors, chemistry, fiber optics, quantum computers...
- * Despite a fearsome reputation, the principles of quantum physics are *simple*.

1927 Solvay conference

29 attendees, 17 Nobel laureates, 18 Nobel prizes.

Dirac notation

Recall that quantum mechanical systems are described by states.

Kets = column vectors Can $|\psi\rangle, |\phi\rangle, |\uparrow\rangle, |+\rangle,$ etc.

Bras = row vectors

 $\langle \psi |, \langle \phi |, \langle \uparrow |, \langle + |, \text{etc.} \rangle$

Inner product

 $\langle \psi | \phi \rangle$, $\langle \uparrow | + \rangle$, etc.

States must be **normalized**.

Can express any vector in an orthonormal basis.

$$|\psi\rangle = \sum_{j} c_{j} |e_{j}\rangle \qquad \langle e_{j} |e_{k}\rangle = \delta_{jk}$$
$$\langle \psi| = \sum_{j} c_{j}^{*} \langle e_{j}|$$

$$\sum_{j} |c_{j}|^{2} = \langle \psi | \psi \rangle = 1$$

Dirac notation

Example: spin-1/2 system Basis:

$$\left\{ |\uparrow\rangle,|\downarrow\rangle\right\} \quad |\uparrow\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, |\downarrow\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Other states can be expanded in the basis:

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle + |\downarrow\rangle\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$\langle\uparrow|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1&0\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}}$$
$$\langle\downarrow|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0&1\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}}$$

Orthonormal:

$$\langle \uparrow | \uparrow \rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \qquad \langle \uparrow | \downarrow \rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$
$$\langle \downarrow | \uparrow \rangle = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \qquad \langle \downarrow | \downarrow \rangle = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$$

We conclude:

 $|+\rangle = \langle \uparrow |+\rangle |\uparrow \rangle + \langle \downarrow |+\rangle |\downarrow \rangle$

Finite-dimensional quantum systems

$$|\psi\rangle = \sum_{n} c_{n} |a_{n}\rangle \qquad \langle \psi | = \sum_{n} c_{n}^{*} \langle a_{n} \rangle$$

normalization:

$$\langle \psi | \psi \rangle = \sum_{m} c_m^* \langle a_m | \sum_{n} c_n | a_n \rangle = \sum_{n,m} c_m^* c_n \langle a_m | a_n \rangle = \sum_{n,m} c_m^* c_n \delta_{m,n} = \sum_{n} |c_n|^2 = 1$$

expansion coefficients:

$$\langle a_m | \psi \rangle = \langle a_m | \sum_n c_n | a_n \rangle = \sum_n c_n \langle a_m | a_n \rangle = \sum_n c_n \delta_{m,n} = c_n$$

More generally, consider a system with a finite number of orthogonal states.

$$\langle a_n | a_m \rangle = \delta_{nm}$$
 orthonormal basis

$$\Rightarrow |\psi\rangle = \sum \langle a_n |\psi\rangle |a$$

Finite-dimensional quantum systems

More generally, consider a system with a finite number of orthogonal states.

$$|\psi\rangle = \sum_{n} \langle a_{n} |\psi\rangle |a_{n}\rangle = \sum_{n} |a_{n}\rangle \langle a_{n} |\psi\rangle = \left(\sum_{n} |a_{n}\rangle \langle a_{n}|\right) |\psi\rangle$$

This holds for all $|\psi\rangle$, so therefore we must have:

$$\sum_{n} |a_n\rangle \langle a_n| = 1$$

We say that the basis forms a **resoluti** called a **completeness relation**.

Any expression of the form $|\psi\rangle\langle\phi|$ is called an **outer product**. Outer products (and sums of them) are linear operators: they act linearly and map vectors to vectors.

We say that the basis forms a **resolution of the identity**. The equation itself is

Operators

Any complete orthonormal basis forms a **resolution of the identity**. *Example*: spin-1/2

$$|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|= \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 1&0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0&1\\1 \end{pmatrix} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix} + \begin{pmatrix} 0&0\\0&1 \end{pmatrix} = \begin{pmatrix} 1&0\\0&1 \end{pmatrix} = 1$$

Different basis choices allow us to expand states in different bases:

$$|\psi\rangle = \langle + |\psi\rangle| + \rangle + \langle - |\psi\rangle| - \rangle \quad (x-b)$$
$$|\psi\rangle = \langle + |\psi\rangle| + \rangle + \langle \downarrow |\psi\rangle| \downarrow \rangle \quad (z-b)$$

It also follows that: $\langle a | b \rangle^* = \langle b | a \rangle$

pasis)

asis)

Operators

In general, any linear operator of commensurate dimension can act on a state. Operators can be thought of as acting from the left or from the right.

The Hermitian conjugate (complex conjugate + transpose) relates the two actions. Operator ordering follows the conventions of matrix multiplication.

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger} \qquad BA |\psi\rangle = A$$

Operators do not commute!

 $AB \neq BA$ (in general)

 $A |\psi\rangle = |\phi\rangle$ (from the left) $\Leftrightarrow \langle \psi | A^{\dagger} = \langle \phi |$ (from the right)

 $\langle \psi | A^{\dagger} B^{\dagger} = \left(\langle \psi | A^{\dagger} \right) B^{\dagger}$ $B(A|\psi\rangle)$

Eigenstates and eigenvalues

Eigenvalues and eigenstates (or eigenvectors, same thing) are solutions to:

 $A | a_n \rangle = a_n | a_n \rangle$ $\uparrow \qquad \uparrow \qquad \uparrow$ eigenvector associated

eigenvalue

then the length can be chosen to be 1.

A huge fraction of practical quantum calculations involves finding eigenstates and eigenvalues.

The length of the eigenvector is not specified by this equation, but if it is nonzero,

Observables and expected values

Observables are operators that are also self-adjoint (or just Hermitian):

$$A = \sum_{n} a_n |a_n \rangle \langle a_n| \qquad \Rightarrow A |a_n \rangle = a_n |a_n\rangle$$

We are often interested in computing expected values of operators (usually for observables, but it can be done more generally).

$$\langle \psi | A | \psi \rangle = \sum_{m,n} \langle a_m | c_m^* c_n A | a_n \rangle = \sum_{m,n} \langle a_n | c_m^* c_n A | a_n \rangle$$

$$= \sum_{m,n} c_m^* c_n a_n \langle a_m | a_n \rangle = \sum_{m,n} c_m^* c_n a_n \delta_{mn} = \sum_n |c_n|^2 a_n$$

- $A = A^{\dagger}$
- They have a complete set of orthonormal eigenvectors and real eigenvalues.
 - $\langle a_n \rangle = A^{\dagger} | a_n \rangle = (\langle a_n | A \rangle^{\dagger} = (\langle a_n | a_n \rangle^{\dagger} = a_n^* | a_n \rangle).$

$$\Rightarrow a_n = a_n^*$$

- $a_m | c_m^* c_n a_n | a_n \rangle$

The Born rule and unitary dynamics

The probability of an outcome of a measurement is given by the Born rule. *Example*: spin-1/2 $p_{\uparrow} = |\langle \uparrow |\psi \rangle|^2$ More generally: $p_n = |\langle a_n | \psi \rangle|^2$ for a measurement in the basis $\{a_n\}$. $p_{\downarrow} = |\langle \downarrow |\psi \rangle|^2$ Unitary matrices are the inverse of their adjoint: $U^{\dagger} = U^{-1}$ by definition, $\Rightarrow U^{\dagger}U = UU^{\dagger} = 1.$

Unitary dynamics therefore preserves total probability: $\sum p_n(U) = \sum |\langle a_n | U | \psi \rangle|^2 = \sum \langle a_n | U | \psi \rangle^* \langle a_n | U | \psi \rangle = \sum \langle \psi | U^{\dagger} | a_n \rangle \langle a_n | U | \psi \rangle$ n n n $= \langle \psi | U^{\dagger} \left(\sum_{n} |a_{n}\rangle \langle a_{n}| \right) U | \psi \rangle = \langle \psi | U^{\dagger} 1 U | \psi \rangle = \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle = 1.$