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Quantum Mechanics

Lecture 2

Time evolution and the Schrödinger equation;
The Hamiltonian as the generator of time translations;
Wave functions in infinite-dimensional Hilbert spaces; 
Position and Momentum Operators.



Commuting operators
Consider the case of two nondegenerate operators A and B 
Suppose they are Hermitian and that they commute.

A |a⟩ = a |a⟩ ⇒ A (B |a⟩) = BA |a⟩ = a (B |a⟩) .

AB = BA
A = A† B = B†

More generally, commuting Hermitian operators share a common eigenbasis.  
(The proof can be done by generalizing the above argument.)

To track commutativity (or lack thereof), introduce the commutator:

[A, B] := AB − BA

is also an eigenstate, which means that: B |a⟩ = b |a⟩ or the eigenstate is not unique.

Many nice algebraic identities…
[A, BC] = [A, B]C + B[A, C][A + B, C] = [A, C] + [B, C][A, B] = − [B, A]

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 … and more.

B |a⟩



Unitary time evolution

Let’s look at the unitary operator that translates a state in time: 

U(t) |ψ(0)⟩ = |ψ(t)⟩ ⟨ψ(t) |ψ(t)⟩ = 1
⟨ψ(0) |U(t)†U(t) |ψ(0)⟩ = 1

U(dt) = 1 −
i
ℏ

Hdt

1 = U(dt)†U(dt) = (1 +
i
ℏ

H†dt) (1 −
i
ℏ

Hdt) = 1 +
i
ℏ

(H† − H)dt ⇒ H = H†

Recall, it must be unitary to conserve probability.

Rather than study the most general such operator, Taylor expand for small time:

Unitarity at first order in dt implies:

Here H is an operator, dt is a small time,  
and the coefficients are a convention. Notice H has units of energy.

H is self-adjoint, so it has a complete orthonormal eigenbasis and real eigenvalues.



The Schrödinger equation

What about at large times? We can expand again, but around t.

U(t + dt) = (1 −
i
ℏ

Hdt) U(t)

U(t + dt) − U(t) = (−
i
ℏ

H) U(t) dt

iℏ
d
dt

U(t) = H U(t)

U(t) = e−iHt/ℏ = 1 +
1
1! ( −iHt

ℏ ) +
1
2! ( −iHt

ℏ )
2

+ …

Schrödinger equation,  
operator form

When H is time-independent, the general solution is:



The Schrödinger equation

Applying both sides to some initial state          , we find

iℏ
d
dt

U(t) = H U(t)

U(t)†U(t) = e+iH†t/ℏe−iHt/ℏ = e+iHt/ℏe−iHt/ℏ = e[+i(H−H)t/ℏ] = 1

Schrödinger equation,  
operator form

Is this still unitary for all t, not just dt? Assuming H is independent of t: 

|ψ(0)⟩

iℏ
d
dt

|ψ(t)⟩ = H |ψ(t)⟩

Schrödinger equation,  
state vector form

U(t)† = U(−t) U(t)U(s) = U(t + s) U(0) = 1



The Hamiltonian operator
Let’s continue assuming that H is independent of t. 

[H] = [ℏ]/[dt] =  EnergyRecall that H has units of energy.

It is self-adjoint, so it is an observable with real eigenvalues. H = H†

It commutes with U(t): [H, U(t)] = [H, e−iHt/ℏ] = 0

What is the expected value of H? Expected value is conserved.

⟨ψ(t) |H |ψ(t)⟩ = ⟨ψ(0) |U(t)†HU(t) |ψ(0)⟩ = ⟨ψ(0) |U(t)†U(t)H |ψ(0)⟩ = ⟨ψ(0) |H |ψ(0)⟩ = ⟨E⟩

We therefore define H to be the Hamiltonian or energy operator. 



The Hamiltonian operator
What are the eigenstates of H? The energy eigenstates:

H |Ej⟩ = Ej |Ej⟩ H = ∑
j

Ej |Ej⟩⟨Ej |

The energy eigenstates are “stationary” with respect to time:

U(t) |Ej⟩ = e−iHt/ℏ |Ej⟩ = e−iEjt/ℏ |Ej⟩ = e−iωjt |Ej⟩
overall phase

Superpositions of energy eigenstates have non-trivial dynamics.  
Example:

U(t)
|E0⟩ + |E1⟩

2
=

1

2
(e−iE0t/ℏ |E0⟩ + e−iE1t/ℏ |E1⟩)



Time dependence of expected values
What about time dependence of expected values more generally?

d
dt

⟨A⟩ = ( d
dt

⟨ψ(t) |) A |ψ(t)⟩ + ⟨ψ(t) |( ∂
∂t

A) |ψ(t)⟩ + ⟨ψ(t) |A ( d
dt

|ψ(t)⟩)
=

i
ℏ

⟨ψ(t) |HA |ψ(t)⟩ +
−i
ℏ

⟨ψ(t) |AH |ψ(t)⟩ + ⟨ψ(t) |
∂A
∂t

|ψ(t)⟩

Operators A that are independent of time are conserved iff they commute with H.

iℏ
d
dt

|ψ(t)⟩ = H |ψ(t)⟩

Use Schrödinger eq:

=
i
ℏ

⟨ψ(t) | [H, A] |ψ(t)⟩ + ⟨ψ(t) |
∂A
∂t

|ψ(t)⟩



Position basis
Our derivation of the Schrödinger equation was completely general. But let’s  
focus on a special case more challenging than spin degrees of freedom: position.

Unlike spin, which takes a finite set of values, position is a continuous variable.

In analogy with spin, let’s consider a 1D line and define a position operator:

̂x |x⟩ = x |x⟩

We should be able to expand any state in the position basis. Because position is a  
continuous variable, the resolution of the identity takes an integral form: 

∫
∞

−∞
|x⟩⟨x |dx = 1 ⇒ |ψ⟩ = ∫

∞

−∞
|x⟩⟨x |ψ⟩dx = ∫

∞

−∞
⟨x |ψ⟩ |x⟩dx



Real-space wave functions

|ψ⟩ = ∫
∞

−∞
⟨x |ψ⟩ |x⟩dx ⇒ ψ(x) := ⟨x |ψ⟩

This suggests defining the wave function        :ψ(x)

What is the Born rule probability for finding the particle at x?

|⟨x |ψ⟩ |2

What is the Born rule probability for finding the particle between x and x+dx?

|⟨x |ψ⟩ |2 dx

No!

Yes!

Position is continuous, so we should define a probability density.

This makes mathematical sense. 

More generally: 

Pr(a < x < b) = ∫
b

a
|⟨x |ψ⟩ |2 dx



Position eigenstates and the Dirac delta function
Are the eigenstates of the position operator valid wave functions?

The Dirac delta function:

See Appendix C of Townsend.

|ψ⟩ = |x0⟩ |x0⟩ = ∫
∞

−∞
|x⟩⟨x |x0⟩dx = ∫

∞

−∞
|x⟩⟨x |x0⟩dx ⇒ ⟨x |x0⟩ = δ(x − x0)

?

Actually a “distribution”, not a function. ∫
∞

−∞
f(x)δ(x − x0)dx = f(x0) For any smooth f(x).

δ(x − x0) = 0  for x ≠ x0 ∫
∞

−∞
δ(x − x0)dx = 1

If f(x) = 1, then:
Clearly we must have:

The Dirac delta function is not a normalizable wave function, so position 
eigenstates are not physically realizable.



Expected values and overlaps

⟨ ̂x⟩ = ⟨ψ | ̂x |ψ⟩ = ∫
∞

−∞
⟨ψ | ̂x |x⟩⟨x |ψ⟩dx = ∫

∞

−∞
x⟨ψ |x⟩⟨x |ψ⟩dx = ∫

∞

−∞
xψ(x)*ψ(x)dx = ∫

∞

−∞
x |ψ(x) |2 dx

The trick is always to insert a resolution of the identity.

⟨ϕ |ψ⟩ = ∫
∞

−∞
⟨ϕ |x⟩⟨x |ψ⟩dx = ∫

∞

−∞
ϕ(x)*ψ(x)dx


