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Particle in a box;
Wave mechanics in 3D; 
The generator of rotations; 
Angular momentum.



A quick recap

T(δx) = 1 −
i
ℏ

̂pδx

̂p = ̂p†[ ̂x, ̂p] = iℏ

Translation is generated by momentum:

The time-independent Schrödinger equation for a 1D particle with potential is:

T(a) = e−i ̂pa/ℏ

̂p ⟶
x basis

ℏ
i

∂
∂x

−
2m(E − V(x))

ℏ2
ψE(x) =

∂2

∂x2
ψE(x)

Momentum obeys the relations:



Particle in a box / finite square well

These tools give us insight into interesting physics!

−
2m(E − V(x))

ℏ2
ψE(x) =

∂2

∂x2
ψE(x) V(x) = {0 |x | < L/2

V0 otherwise

❖ Fixed number of bound states

❖ Quantized energy levels,

❖ Particles “exist” in classically forbidden regions

❖ Energy eigenstates with E > V0 cannot be normalized

❖ Scattering states must form wave packets

❖ States can scatter back off a potential well

En ∝ n2/mL2  when  V0 → ∞



Towards 3D wave mechanics: rotations
Our eventual goal is to get a quantitative understanding of the physics of atoms.  
“Particle in a box” is too simple to give predictions that match experiment.

R(θe)

To achieve that, we’ll need to build on our toolkit from 1D and incorporate one  
more phenomenon that doesn’t exist in only one dimension: rotations.

Rotate with right-hand orientation around axis e by angle θ.

How do rotation operators act on spin states?  
Example:  spin-1/2

R( π
2 ey) |z+⟩ = |x+⟩

Introduce the rotation operator:

R( π
2 ey) |z−⟩ = |x−⟩

Makes sense… but what about a possible overall phase? Because a global phase won’t change 
physical observables, we might need to add it to consistently define rotation operators.



Rotation operators

R(θez) |z±⟩ = eiϕ±(θ) |z±⟩

Let’s be more systematic and recycle the recipe for time and space translations.  
Introduce a generator for infinitesimal rotations around each axis:

R(δθez) = (1 −
i
ℏ

Jzδθ)
It must be unitary, so Jz is Hermitian.

Moreover, z-aligned states must be eigenstates for every θ!

R†R = 1 ⇒ J†
z = Jz

And Jz clearly has units of angular momentum.

Example:  spin-1/2

R(θez) = e−iJzθ/ℏ



Rotation operators
How does the phase depend on the angle? To remain consistent with 
interpretation as angular momentum, we must have for spin-1/2:

Jz |z+⟩ = ± ℏ
2

|z+⟩

Sanity check:

R(θez) |z±⟩ = e∓iθ/2 |z±⟩

R(θez) |x+⟩ = R(θez) 1

2
( |z+⟩ + |z−⟩)

= 1

2
(e−iθ/2 |z+⟩ + e+iθ/2 |z−⟩) = e−iθ/2

2
( |z+⟩ + e+iθ |z−⟩)

θ = π
2 ⟶ = e−iπ/4

2
( |z+⟩ + i |z−⟩) = e−iπ/4 |y+⟩



Commutation relations for rotation operators
More generally, we can have a rotation about any axis:

R(θn) = eiθn⋅J/ℏ n ⋅ J = nxJx + nyJy + nzJz

All the above insights can be generalized to any spin, not just spin 1/2. 
To go beyond the spin-1/2, let us study the commutation relations

Here ε is the Levi-Civita symbol, or totally antisymmetric tensor

ϵijk =
+1  if (i j k) is a cyclic permutation,
−1  if (i j k) is an anticyclic permutation,
0  if any index repeats.

i

jk

[Ji, Jj] = iℏ∑k ϵijkJk

Example:

[Jx, Jy] = iℏJz



Total angular momentum: the Casimir operator
Rotations about different axes don’t commute, but there is another invariant.

J2 := J2
x + J2

y + J2
z

Recall: [Ji, Jj] = iℏ∑k ϵijkJk [A, BC] = B[A, C] + [A, B]C

Total angular momentum (squared),  
sometimes called Casimir operator

[Jz, J2] = [Jz, J2
x ] + [Jz, J2

y ] + [Jz, J2
z ]

[Jz, J2
z ] = 0

[Jz, J2
x ] = Jx[Jz, Jx] + [Jz, Jx]Jx = Jx(+iℏJy) + (+iℏJy)Jx

[Jz, J2
y ] = Jy[Jz, Jy] + [Jz, Jy]Jy = Jy(−iℏJx) + (−iℏJx)Jy

⇒ [Jz, J2] = 0



Simultaneous eigenstates, raising and lowering operators
Since J2 and Jz are commuting and self-adjoint, they have a common eigenbasis.

J2 |λ, m⟩ = λℏ2 |λ, m⟩

To be more explicit, we must define raising and lowering operators:

Here λ and m are labels for the eigenstates.  
We sometimes call them “quantum numbers”.Jz |λ, m⟩ = mℏ |λ, m⟩

J± = Jx ± iJy not self-adjoint!

[Jz, J±] = [Jz, Jx] ± i[Jz, Jy] = (iℏJy) ± i(−iℏJx) = ± ℏJ±

Do these commute with Jz?

Doesn’t commute!



Simultaneous eigenstates, raising and lowering operators
Although they don’t commute, the mutual action on the basis is key:

JzJ+ |λ, m⟩ = ([Jz, J+] + J+Jz) |λ, m⟩ = (ℏJ+ + J+mℏ) |λ, m⟩ = ℏ(m + 1)J+ |λ, m⟩

Jz(J+ |λ, m⟩) = ℏ(m + 1)(J+ |λ, m⟩) J+ shifts the eigenvalue of Jz up by one

Note that raising and lowering commute with J2, so λ is unchanged.

Jz(J− |λ, m⟩) = ℏ(m − 1)(J− |λ, m⟩)
Similarly:

These operators add and subtract one quanta of angular momentum to the 
z-projection of the angular momentum eigenstates.


