Prof. Steven Flammia

(Quantum Mechanics

Lecture 8

Spherical harmonics: what atoms look like;
Bound states of the Coulomb potential;
Quantized energy levels;

Radial wave functions;

Degeneracy.




A quick recap

A two-body system in a radially symmetric potential satisfies:
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Total momentum, AM, and energy conservation common eigenstates in
position basis in spherical coordinates

The Schrodinger equation reduces to:
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Single-particle equation with an effective potential
The angular wave function is given by the spherical harmonics:
Spherical analog of

Fourier decomposition Ylm(e’ ¢) X eim¢PZm(COS 6) I = O, 1, 2, S

of periodic functions. =0 - |



Spherical probability density
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Given a wave function with an angular
| Y™(0, ) ‘2 vs. {I,£m)  component in a spherical harmonic eigenstate,
the probability to find the particle inside some
(not to uniform scale)  golid angle dQ that is situated at coordinates

(0,0) is given by:

| Y70, ) | dD

This interpretation is consistent with the
normalization condition:

J| Y™6,$)|7dQ = 1




Phase dependence and orthogonality

Y, (0,¢) vs. {l,m]} More generally, we have the
orthogonality condition

[I/Zm(ea ¢)* Yl’j”'(g, ¢)dQ = 51,1'5m,m'

Alternative real form:
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E?e real—fo:.rr.n spherical harm011.1cs; V2 (= 1)" Tm[¥}™] if m < 0
ue = positive, = negative. = 3 Y0 if m=0
Complex linear combinations of these functions V2 (=1 Re[Y}"] if m> 0.

still span the space of angular wave functions.



Bound states of CGoulomb potentials

A hydronic atom has nuclear charge Ze and one electron.
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The limiting behavior of this equation is given by:
dn i 5 i K+ D
e s =
T de 4 e de ,02 > These two limits suggest a change of
variables that matches and interpolates.
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Bound states of CGoulomb potentials

To match the limiting behavior, try: u = p'tle™PF(p)
= oy 7 = =
= e () Aoeon Lot interpolating
dp2 p2 P 4 0 P — function
Now we have a new ODE for F:
d°F dr Selablah | '
e 2 2 y a power series, but we can look up the solution!
¢ dpz T (2l +2 P) dp T (/1 (l T 1))F =4 This equation was solved by Laguerre (1879) and by Sonin (1880).

Solutions are known as associated Laguerre polynomials.
Solutions are singular unless: A =(+1)+k, k=0,1,...

To avoid singularities, A must be quantized into positive integers! .
Define the principle quantum number: -
o =0, n=12 ..



(Quantized energy levels

Recall our substitutions:

Ze? U
A> e ——
n\/2|E]
Solve for the nth energy level:
I uzZ*e* T ) s e’ 1
S = ag=—1=
4 2h*n? 7275 hc 137

For hydrogen (Z = 1) in the ground state n = 1:

uc? has units of energy, and is about 0.511 MeV for hydrogen. L 1 —

uc-a

The fine structure constant:
a dimensionless fundamental constant

)

~ — 13.6eV



Hydrogen emission spectrum

Lymann-sorozat

We can predict the spectral lines of hydrogen.
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Radial wave functions

Recall these are given in terms of the associated Laguerre polynomials L..

u=R/r = ptle2F(p) . \/Sﬂ‘E‘ e 2'“CZ0‘,, _ 2 Bohr radius:
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P dp2 + (21 P P)% * (/1 7z (l + 1)>F = 0 Characteristic length for Z =1, n =1.

Solutions, after normalization, look like the following:
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Radial wave functions

Visualizing the radial wave functions.
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Degeneracy

These solutions have a large number of degenerate states at the same energy.
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For hydrogen, we have also ignored spin states of the electron and proton.

2 X 2 X n?=4n?

Next lecture, we will see that these degeneracies can be broken when we take into
account various complications like spin.



