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Quantum Mechanics

Lecture 8

Spherical harmonics: what atoms look like;
Bound states of the Coulomb potential;
Quantized energy levels;
Radial wave functions;
Degeneracy.



A quick recap

A two-body system in a radially symmetric potential satisfies:

R(r) = u(r)
r

ψE,l,m(r) = ⟨r |E, l, m⟩ = R(r)Ym
l (θ, ϕ)

Ym
l (θ, ϕ) ∝ eimϕPm

l (cos θ)

( −ℏ2

2μ
∂2

∂r2
+ Veff (r)) u(r) = E u(r) Veff (r) =

l(l + 1)ℏ2

2μr2
+ V(r)

[P̂, H] = [Lz, H] = [L2, H] = [Lz, L2] = 0

The Schrödinger equation reduces to:

common eigenstates in  
position basis in spherical coordinates

Single-particle equation with an effective potential

The angular wave function is given by the spherical harmonics:

m = − l, … , l
l = 0, 1, 2, …Spherical analog of  

Fourier decomposition  
of periodic functions.

Total momentum, AM, and energy conservation



Spherical probability density

|Ym
l (θ, ϕ) |2 vs. {l, ± m}

Given a wave function with an angular 
component in a spherical harmonic eigenstate, 
the probability to find the particle inside some 
solid angle dΩ that is situated at coordinates 
(θ,φ) is given by:

|Ym
l (θ, ϕ) |2 dΩ

(not to uniform scale)

This interpretation is consistent with the 
normalization condition:

∫ |Ym
l (θ, ϕ) |2 dΩ = 1



Phase dependence and orthogonality
Ylm(θ, ϕ) vs. {l, m}

The real-form spherical harmonics;  
blue = positive, yellow = negative.

∫ Ym
l (θ, ϕ)* Ym′�

l′� (θ, ϕ)dΩ = δl,l′�δm,m′�

More generally, we have the 
orthogonality condition

Alternative real form:

s
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Complex linear combinations of these functions 
still span the space of angular wave functions.

Ylm =

i

2
(Ym

l − (−1)m Y−m
l )  if m < 0

Y0
l  if m = 0
1

2
(Y−m

l + (−1)m Ym
l )  if m > 0.

=
2 (−1)m Im[Y|m|

l ]  if m < 0
Y0

l  if m = 0

2 (−1)m Re[Ym
l ]  if m > 0.



Bound states of Coulomb potentials
A hydronic atom has nuclear charge Ze and one electron.

V(r) = −
Ze2

r (For hydrogen, Z = 1.)
Veff (r) = −

Ze2

r
+

l(l + 1)ℏ2

2μr2
Coulomb potential

Bound states will have negative energy            ,  
so introduce dimensionless variables to obtain:

ρ =
8μ |E |

ℏ2
r

E < 0

λ =
Ze2

ℏ
μ

2 |E |

The limiting behavior of this equation is given by:

⇒
d2u
dρ2

−
l(l + 1)

ρ2
u + ( λ

ρ
−

1
4 ) u = 0

ρ → ∞ ⇒
d2u
dρ2

=
u
4

⇒ u = Aeρ/2 + Be−ρ/2

(blows up)

ρ → 0 ⇒
d2u
dρ2

=
l(l + 1)

ρ2
u

⇒ u = Aρl+1 + Bρ−l

(blows up)

These two limits suggest a change of  
variables that matches and interpolates.



Bound states of Coulomb potentials
To match the limiting behavior, try: u = ρl+1e−ρ/2F(ρ)

d2u
dρ2

−
l(l + 1)

ρ2
u + ( λ

ρ
−

1
4 ) u = 0 match

ρ → 0 ρ → ∞
match interpolating  

function

Now we have a new ODE for F:

ρ
d2F
dρ2

+ (2l + 2 − ρ)
dF
dρ

+ (λ − (l + 1))F = 0 Solvable by a power series, but we can look up the solution!  
This equation was solved by Laguerre (1879) and by Sonin (1880).

Solutions are known as associated Laguerre polynomials. 
Solutions are singular unless: λ = (l + 1) + k , k = 0,1,…

To avoid singularities, λ must be quantized into positive integers! 
Define the principle quantum number: λ → n , n = 1, 2, … ⇒ l ≤ n − 1

Also:



Quantized energy levels
Recall our substitutions:

λ → n =
Ze2

ℏ
μ

2 |E |

Solve for the nth energy level:

En = −
μZ2e4

2ℏ2n2
= −

μc2Z2α2

2n2
α =

e2

ℏc
≈

1
137

The fine structure constant: 
a dimensionless fundamental constant

μc2 has units of energy, and is about 0.511 MeV for hydrogen.

For hydrogen (Z = 1) in the ground state n = 1:

E1 = −
μc2α2

2
≈ − 13.6eV



Hydrogen emission spectrum
We can predict the spectral lines of hydrogen. 

(log scale)

ν =
1
λ

=
1
h

(Ei − Ef) = RH ( 1
n2

f
−

1
n2

i )
RH =

μc2Z2α2

2h
Rydberg constant



Radial wave functions
Recall these are given in terms of the associated Laguerre polynomials    .

ρ =
8μ |E |

ℏ2
r =

2μcZα
nℏ

r =
2Zr
na*0

u = R/r = ρl+1e−ρ/2F(ρ)

ρ
d2F
dρ2

+ (2l + 2 − ρ)
dF
dρ

+ (λ − (l + 1))F = 0

a0 :=
ℏ

mecα
≈

ℏ
μcα

=: a*0

Bohr radius:

Characteristic length for Z = 1, n = 1.

Solutions, after normalization, look like the following:

ψnlm(r, θ, ϕ) = Rnl( 2Zr
na*0 )Ym

l (θ, ϕ)

n = 1,2,3,…
l = 0,…, n − 1

m = − l, …, l

Rnl(r) = ( 2
na*0 )

3/2
(n − l − 1)!
2n(n + l)!

e−r/2rlL2l+1
n−l−1(r)

Lt
s

In total:



Radial wave functions
Visualizing the radial wave functions.

n = 1,2,3,…
l = 0,…, n − 1

Rnl(r) = ( 2
na*0 )

3/2
(n − l − 1)!
2n(n + l)!

e−r/2rlL2l+1
n−l−1(r)

Rnl( 2Zr
na*0 )



Degeneracy
These solutions have a large number of degenerate states at the same energy.

l = 0,…, n − 1 n−1

∑
l=0

(2l + 1) = 2
(n − 1)n

2
+ n = n2

m = − l, …, l

For hydrogen, we have also ignored spin states of the electron and proton.

2 × 2 × n2 = 4n2

Next lecture, we will see that these degeneracies can be broken when we take into 
account various complications like spin.


