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Hyperfine structure;
Singlet and triplet states;
Addition of angular momentum;
Clebsch-Gordan coefficients.



A quick recap
The spin and orbital AM of an electron couple to give fine structure.

HSO ∝ S ⋅ L

We defined a new total AM operator:  
The symmetries of HSO are now:

J = S + L ,

[HSO, S2] = [HSO, L2] = [HSO, J2] = [HSO, Jz] = 0

Some of old quantum numbers become “bad” and must be replaced:

(l, ml, s, ms) → (l, s, j, mj)

[HSO, Sz] ≠ 0 , [HSO, Lz] ≠ 0

old quantum 
numbers

new quantum 
numbers

[S2, Jz] = [L2, Jz] = 0

(n is still good, too)

[S, L] = 0



A quick recap
The new quantum numbers j, mj are expressions of conservation of AM:

mj = ml+
1
2 , j = l± 1

2

| l± 1
2 , mj⟩ = α± |χ1⟩ ± β± |χ2⟩

|χ1⟩ = | l, mj−
1
2 , 1

2 , 1
2 ⟩ , |χ2⟩ = | l, mj+

1
2 , 1

2 ,− 1
2 ⟩

The new states that diagonalize HSO are linear combinations of the old ones:

The corrections to the energy are found by taking expected values.

E(1)
SO = ⟨n, j, mj |HSO |n, j, mj⟩

(Just some coefficients… we can look them up.)



Hyperfine structure
We can follow this recipe again to understand the hyperfine structure, i.e. the 
splitting in energies due to spin-spin coupling between the electron and proton.

[I, S] = 0

|mi, ms⟩ := | i, mi, s, ms⟩ = | i, mi⟩ ⊗ |s, ms⟩

F = I + S

Before perturbation, 4 degenerate states:

HHF =
2A
ℏ2

S ⋅ I

For simplicity, we restrict our discussion to the hydrogen ground state n = 1.

Introducing a total AM operator 
is a very good idea:

|χ1⟩ = |+ 1
2 ,+ 1

2 ⟩ |χ2⟩ = |+ 1
2 ,− 1

2 ⟩

|χ3⟩ = |− 1
2 ,+ 1

2 ⟩ |χ4⟩ = |− 1
2 ,− 1

2 ⟩



Total angular momentum is conserved
Total F and Fz also give good quantum numbers for HHF:

F = I + S F2 = I2 + S2 + 2 S ⋅ I

Fz = Iz + Sz 2 S ⋅ I = F2 − I2 − S2

[Fz, S ⋅ I] = [Iz + Sz, IxSx + IySy + IzSz]
= [Iz, Ix]Sx + [Iz, Iy]Sy + Ix[Sz, Sx] + Iy[Sz, Sy]
= iℏIySx − iℏIxSy + iℏIxSy − iℏIySx = 0

[F, S ⋅ I] = [Fz, S ⋅ I] = 0

We conclude that f and mf = mi + ms are good quantum numbers for HHF.

Explicitly:

[Iz, HHF] ≠ 0 , [Sz, HHF] ≠ 0Note: Need to use f and mf quantum numbers now.



Matrix elements for HHF

What are the matrix elements                   of HHF in the unperturbed basis?

Rewrite in terms of raising and lowering operators:

⟨χj |HHF |χk⟩

2 S ⋅ I = I+S− + I−S+ + 2IzSz Easily verified from definitions.

⟨χ1 |2 S ⋅ I |χ1⟩ = ⟨ 1
2 , 1

2 |2 S ⋅ I | 1
2 , 1

2 ⟩

= ⟨ 1
2 , 1

2 | I+S− | 1
2 , 1

2 ⟩ + ⟨ 1
2 , 1

2 | I−S+ | 1
2 , 1

2 ⟩ + 2⟨ 1
2 , 1

2 | IzSz | 1
2 , 1

2 ⟩

= 2⟨ 1
2 , 1

2 | IzSz | 1
2 , 1

2 ⟩

= 2 ⋅ 1
2 ℏ ⋅ 1

2 ℏ ⟨ 1
2 , 1

2 | 1
2 , 1

2 ⟩

= 1
2 ℏ2

Matrix elements are now straightforward to calculate. Example:



Eigenvalues
The matrix in this basis is:

Diagonalizing this gives us the new eigenstates and eigenvalues.

{ A
2 , A− A

2 , − A− A
2 , A

2 }

HHF =
2A
ℏ2

S ⋅ I ⟶

A/2
−A/2 A

A −A/2
A/2

Eigenvalues:

Middle block is basically Sx.(all other terms vanish)

(−A/2 A
A −A/2) = 2A

ℏ Sx−
A
2

Eigenvectors:

{ |χ1⟩, 1

2
( |χ2⟩ + |χ3⟩), 1

2
( |χ2⟩ − |χ3⟩), |χ4⟩}

{ A
2 , A

2 , A
2 , − 3A

2 }
Rearranging… 

{ | ↑ ↑ ⟩, 1

2
( | ↑ ↓ ⟩ + | ↓ ↑ ⟩), | ↓ ↓ ⟩, 1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)}

“Triplet” “Singlet”degenerate



Quantum numbers
The new total AM quantum numbers are constrained

F2 = I2 + S2 + 2 S ⋅ I
For consistency, use:

f( f + 1) = 1
2 ( 1

2 +1)+ 1
2 ( 1

2 +1) + {1/2
−3/2

⇒ f = {1
0

Two choices:

1
2 + 1

2 = 1 , 1
2 − 1

2 = 0Again we see that total angular momentum adds up nicely:

In terms of the new f quantum number, the states have a natural interpretation:

| f, mf⟩ =

|1,1⟩ = | ↑ ↑ ⟩

|1,0⟩ = 1

2
( | ↑ ↓ ⟩ + | ↓ ↑ ⟩)

|1, − 1⟩ = | ↓ ↓ ⟩

|0,0⟩ = 1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)

There are three ways to have total spin 1 
and just one way to have total spin 0. 

We also see that the spin 1 states are symmetric, 
while the spin 0 state is antisymmetric.



Addition of angular momenta
General question:  
Given two spins, j1 and j2, what are the allowed values of total AM?

J = | j1 − j2 | , | j1 − j2 | + 1, … , j1 + j2

We want to be able to answer questions like (for example):

Math-speak: “decompose into a direct sum of 
irreducible representations of SU(2)”.

For each value of the total spin, we can have a z-component:

M = − J, − J + 1, … , J |J, J⟩ is always totally symmetric.

A spin j1 = 3/2 and spin j2 = 1 particle have total spin J = 3/2 and M = 1/2.  
Now measure the z-component of each individually. 

What is the probability of finding (m1, m2) = (+3/2, -1)?  
What about (m1, m2) = (+1/2, 0)? What about (m1, m2) = (-1/2, 1)?



Clebsch-Gordan coefficients
A general solution to this problem is given by the Clebsch-Gordan coefficients:

|J M⟩ =
j1

∑
m1=−j1

j2

∑
m2=−j2

| j1 m1 j2 m2⟩⟨j1 m1 j2 m2 |J M⟩ =
j1

∑
m1=−j1

j2

∑
m2=−j2

Cj1 j2 J
m1 m2 M | j1 m1 j2 m2⟩

Cj1 j2 J
m1 m2 M = ⟨j1 m1 j2 m2 |J M⟩ Cj1 j2 J

m1 m2 M ≠ 0 ⇒ M = m1 + m2

(conservation of AM)

Resolution of identity 
in the j1-j2 subspace.

The Clebsch-Gordan coefficients are just the basis expansion coefficients.

These are tabulated, and you can look them up.



Clebsch-Gordan tables
Returning to our example question:

Cj1 j2 J
m1 m2 M = ⟨j1 m1 j2 m2 |J M⟩

j1 = 3
2 , j2 = 1

|J, M⟩ = | 3
2 ,+ 1

2 ⟩

= 2
5

| 3
2 , 3

2 , 1, − 1⟩ + 1
15

| 1
2 , 3

2 , 1,0⟩ − 8
15

| 3
2 ,− 1

2 , 1,1⟩

Use the Born rule to calculate the answers:

⟨ 3
2 , 3

2 , 1, − 1 | 3
2 ,+ 1

2 ⟩
2

= 2
5

2

= 2
5

Probability of finding (+3/2, -1) for the two z-components.

| j1, m1, j2, m2⟩

Similarly, the probability of finding (+1/2, 0) is 1/15 and of finding (-1/2,+1) is 8/15.


