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Fermi’s golden rule.



A quick recap
Time-dependent perturbation theory requires a new perturbative ansatz:

HI(t) = eiH0t/ℏ H1(t) e−iH0t/ℏ

It is convenient to work in the “relative coordinates” of the interaction picture, 
where the evolution equations become: 

·OI = i
ℏ [H0, OI] iℏ | ·ψI(t)⟩ = HI(t) |ψI(t)⟩

H(t) = H0 + H1(t) |ψ(t)⟩ = ∑
n

cn(t)e−iEnt/ℏ |n⟩

cf(t) = ⟨ f |UI(t) | i⟩ = δfi −
i
ℏ ∫

t

0
dt′�ei(Ef−Ei)t′�/ℏ⟨ f |H1(t′�) | i⟩ + …

The perturbative part c of the amplitude to transition from an initial eigenstate i 
of the bare Hamiltonian to a final eigenstate f is given by:

|E(0)
n ⟩ → |n⟩

(Simplify notation:

The full eigenstates 
might not even exist.)



Bohr frequency
From now on, we will work exclusively to first order and assume that f ≠ i. 
Looking carefully at the amplitude, it has the form of a Fourier transform:

Thus, we have the intuition that if 〈f|H1|i〉 has frequency components near the Bohr frequency 
then this amplitude should be large in magnitude.

Conversely, if 〈f|H1|i〉 has no frequency components near ωfi, then we expect this amplitude to 
have a small magnitude.

Introduce the  
Bohr frequency:

ωfi := (Ef − Ei)/ℏ
cf(t) =

−i
ℏ ∫

t

0
dt′�eiωfit′�⟨ f |H1(t′�) | i⟩

Looks like the Fourier transform of 〈f|H1|i〉 at ωfi.



Constant perturbation
If H1 is constant in time, then the integral is very easy:

As t increases, this function limits to a Dirac delta function:

Pi→f = |cf(t) |2 =
1
ℏ2

sin2(ωfit/2)
(ωfi/2)2

|⟨ f |H1 | i⟩ |2

t lim
t→∞

1
t

|cf(t) |2 =
πtδ(ωfi/2)

ℏ2
|⟨ f |H1 | i⟩ |2

Characteristic spreading of probability to transition is called lifetime broadening.

ω

sin2(tω/2)
(ω/2)2

cf(t) =
−i
ℏ

⟨ f |H1 | i⟩∫
t

0
eiωfit′�dt′ � =

−i
ℏ

⟨ f |H1 | i⟩( eiωfit/2

ωfi/2
sin(ωfit/2))

The transition probability is therefore:

= t2sinc2(tω/2)



What about energy conservation?
The approach to a delta function suggests that as time increases, only final 
states at the Bohr frequency have allowed transitions. What about smaller t?

Fortunately, we have the Time-Energy uncertainty principle:

ΔEΔt ≥
ℏ
2

Furthermore, we don’t expect strict energy conservation if the Hamiltonian is explicitly time-
dependent. The extra energy could come from driving the system’s time dependence, in fact.

ω

sin2(tω/2)
(ω/2)2

= t2sinc2(tω/2)

For small t, the system can transition to a state with different energy!

Small times can have large energy jumps;
for large times, only small energy jumps occur.



Harmonic perturbation
If H1 is has a pure frequency ω, the integral is just as easy:

Each term is nearly a δ-function, so only one term will substantially contribute if the drive 
frequency ω is on resonance with the Bohr frequency. Broadly two paradigms:

H1(t) = 2V( ̂r)cos(ωt) = V( ̂r)(eiωt + e−iωt)

η± :=
ωfi ± ω

2
cf(t) =

−i
ℏ

⟨ f |V( ̂r) | i⟩∫
t

0
(eiωt′� + e−iωt′ �)eiωfit′�dt′�

=
−i
ℏ

⟨ f |V( ̂r) | i⟩(eiη+t sin(η+t)
η+

+eiη−t sin(η−t)
η− ) deviation of driving frequency 

from Bohr frequency

Introduce:

ωfi > 0
absorption

η−      term  
dominates

η+      term  
dominates

ωfi < 0
stimulated 
emission

| i⟩

| i⟩| f ⟩

| f ⟩



Absorption in the long time limit
Consider the case of absorption (for stimulated emission, just change ω to -ω).  
The transition probability in the long time limit becomes a δ function:

Pi→f =
1
ℏ2

|⟨ f |V( ̂r) | i⟩ |2 ( sin(η−t)
η− )

2 t ≫ 1/η− 2πt
ℏ2

|⟨ f |V( ̂r) | i⟩ |2 δ(ωfi − ω)

As the probability increases linearly with time, it is convenient to define a rate:

Ri→f =
d
dt

Pi→f =
2π
ℏ2

|⟨ f |V( ̂r) | i⟩ |2 δ(ωfi − ω)

This is the δ-function version of Fermi’s golden rule for a harmonic drive. 
Physically, the rate is the probability per unit time of transitioning from i to f.



Fermi’s golden rule
The transition rate seems to require strict energy conservation. However, as 
we’ve seen, for finite times the system can still transition to states that nearly 
satisfy the resonance condition. We should integrate over these states!

Ri→f = ∫
Ef+ϵ

Ef−ϵ

2π
ℏ2

|⟨ f |V( ̂r) | i⟩ |2 δ(ω′� − ωi − ω) g(E′�) dE′�

=
2π
ℏ

|⟨ f |V( ̂r) | i⟩ |2 ∫
Ef+ϵ

Ef−ϵ
δ(E′� − Ei − E) g(E′�) dE′�

=
2π
ℏ

|⟨ f |V( ̂r) | i⟩ |2 g(Ef)
Ef≃Ei+ℏω

This version of the golden rule is nice because the δ function is gone.

Integrate with a 
density of states g(E)


