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Electric dipole approximation; 
Einstein A and B coefficients;
Spontaneous Emission;
Selection Rules.



A quick recap
Fermi’s golden rule tells us how to compute the rate of a transition from          . 
For a harmonic perturbation with drive frequency ω, we find:

H(t) = H0 + 2V( ̂r) cos(ωt)

If we integrate this over a density of final states g(E), then we find that

i → f

Ri→f =
2π
ℏ2

|⟨ f |V( ̂r) | i⟩ |2 δ(ωfi − ω)
ωfi = (Ef − Ei)/ℏ

Ri→f =
2π
ℏ

|⟨ f |V( ̂r) | i⟩ |2 g(Ef)
Ef≃Ei+ℏω

More complicated driving terms can be handled by expanding the drive as a 
Fourier series and following the same steps in the argument.



Electric dipole interaction
Consider coupling to an electric dipole, with perturbing term given by

H1(t) = − d ⋅ E , E(t) = 2E0 ̂ε cos(ωt)

We neglect the k.x term that is normally there and treat the field as spatially 
homogeneous. This is the electric dipole approximation.

At any given time, the whole atom sees a uniform electric field.

From Fermi’s golden rule and the dipole moment, the transition rate is given by

ℓatom = 0.1 nm ≪ 400-700 nm = λvisible

Ri→f =
2πe2E2

0

ℏ2
| ̂ε ⋅ ⟨ f | ̂r | i⟩ |2 δ(ωfi − ω)d = − e ̂r



Dealing with multiple frequencies
With more than one frequency in the problem, we have two extreme cases:

Broadband:  
If the light is incoherent across many 
wavelengths, then sum over the rates for each 
frequency in the drive to get the total 
transition rate.

Monochromatic:  
If the target state isn’t a well-defined final state 
(an entire band of resonant frequencies), then 
we integrate over all the final states (including a 
density of states) .



Einstein model of broadband excitation
Consider a gas of non-interacting two-level atoms in thermal equilibrium with blackbody 
radiation at temperature T. The radiation creates electric dipole transitions between the two 
states via broadband excitation. 

Ri→f = Bif ρ(ωfi)

U
V

= ∫
∞

0
ρ(ω)dω

E2
0 → 2πρ(ω)dω| ̂ε ⋅ ̂r |2 → 1

3

Time-average the electromagnetic 
energy density (Poynting vec):

Planck distribution blackbody spectrum in frequency space:

To apply Fermi’s golden rule, we need the density of states.

Spatial average over random 
polarization direction:

Bif =
4π2e2

3ℏ2
|⟨ f |r | i⟩ |2

Transition rates Einstein B coefficient



Spontaneous emission
Notice that stimulated emission and absorption occur at the same rate:

|⟨2 |r |1⟩ |2 = |⟨1 |r |2⟩ |2 ⇒ B12 = B21 =: B

Is this incompatible with Boltzmann’s distribution?  
In thermal equilibrium, we must have

Pr(1)
Pr(2)

=
N1/N
N2/N

=
e−E1/kT /Z
e−E2/kT /Z

= eℏω21/kT ⇒
N1

N2
= eℏω21/kT

To preserve equilibrium, we need a third process: spontaneous emission.

B12ρ(ω21) B21ρ(ω21) A := A21



Spontaneous emission
What is the spontaneous emission rate?

In thermal equilibrium, we have stationary population:

dN1

dt
= − N1Bρ(ω21) + N2Bρ(ω21) + N2A = 0

A = ( N1

N2
− 1) Bρ(ω21)

= (eℏω21/kT − 1) B ( ℏ
π2c3

ω3
21

eℏω21/kT − 1 )

B12ρ(ω21) B21ρ(ω21) A := A21

⇒ A =
4e2ω3

21

3ℏc3
|⟨2 |r |1⟩ |2

(Planck spectrum)

Rate of spontaneous emission is 
independent of the field strength!

Lifetime of excited states is limited 
by A, so that τ ~ 1/A is a 
fundamental time scale for decay.



Monochromatic light
When the light is monochromatic and not broadband, we cannot just average 
over the polarization of the light, and the rates will generally depend on it.

⟨ f | ̂ε ⋅ r | i⟩ = ⟨ f | ̂ε ⋅ ̂r r | i⟩

For general atomic wave functions, this splits into radial and angular integrals:

⟨nf, lf, mf | ̂ε ⋅ ̂r r |ni, li, mi⟩ = (∫
∞

0
dr r2 R*nf ,lf

r Rni,li) (∫ dΩ Y*lf ,mf
̂ε ⋅ ̂r Yli,mi)

(some radial part)

The polarization and position unit vector become:
̂ε ⋅ ̂r = εx sin θ cos ϕ + εy sin θ sin ϕ + εz cos θ

= 4π
3 (εzY1,0+

−εx + iεy

2
Y1,1+

εx + iεy

2
Y1,−1) Spherical harmonics at l=1.



Forbidden transitions
The transition matrix element is now constrained by the angular integrals, 
which are all of the form:

What does this remind us of? …Clebsch-Gordan coefficients! After some math:

⟨ f | ̂ε ⋅ r | i⟩ ∝
1

∑
m=−1

cm ∫ dΩ Y*lf ,mf
Y1,m Yli,mi

Thus if the associated Clebsch-Gordan coefficient is zero, there can be no 
transition (from an electric dipole coupling). Such a forbidden transition might 
still have a nonzero transition probability arising from magnetic dipole or 
electric quadruple transitions, though. 

∫ dΩ Y*lf ,mf
Y1,m Yli,mi

∝ ⟨li, mi ; 1,m | lf, mf⟩ = (Cli 1 lf
mi m mf)

*



Selection rules
The transition matrix element is now constrained by the angular integrals, 
which are all of the form:

Clebsch-Gordan coefficients are themselves constrained by AM conservation:

⟨ f | ̂ε ⋅ r | i⟩ ∝ ∑
m

cm⟨li, mi ; 1,m | lf, mf⟩ = ∑
m

cm Cli 1 lf
mi m mf

A parity argument furthermore shows that the lf = li term vanishes, so we have:

lf = li − 1, li, li + 1 mf = mi + m

Electric dipole selection rules: Δl = ± 1
Δm = 0, ± 1



Electric dipole selection rules
For hydrogen, the allowed electric dipole transitions look as follows:

Δl = ± 1
Δm = 0, ± 1

  l=0         l=1        l=2         l=3

n=1

n=2

n=3
n=4

The m = ±1 transitions give circularly 
polarized light to conserve AM. The m = 0 
transition gives linearly polarized light 
along the quantization axis. 

Hydrogen level diagram, ignoring fine structure


